
A Verilog Parser in ACL2

Jared Davis

Centaur Technology

September 10, 2008

Page 1 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 1 / 73

Introduction

Introduction

A preprocessor, lexer, and parser for Verilog 2005 (IEEE-1364)

Basically complete for modules

Verilog is a pretty big language

Long history, many-level modelling, simulation mixed in

Preprocessor, 125 keywords, 50 other token types, 20-page grammar

Primary concern: correct translation

Simplicity over performance

Elaborate well-formedness checks

Mostly in logic-mode with verified guards

Unit tests to promote semantic correctness

Page 2 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 2 / 73

Introduction

High-level design

Page 3 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 3 / 73

Introduction

Results

Performance is quite acceptable (550K LOC)

Read top.v 6s 2.6 GB
Preprocess top.v 4s 1 GB
Lex top.v 28s 2.5 GB
Parse top.v 20s 1.4 GB
Load libraries 20s 1.7 GB

Total 78s 9.3 GB

Working on making an ACL2 image with the chip pre-loaded

Page 4 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 4 / 73

Introduction

Outline

1 Reading files

2 The preprocessor

3 The lexer

4 Classic recursive-descent parsing

5 The SEQ language

6 Final touches

7 Logic-mode parsing

8 The parser

9 Demo

Page 5 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 5 / 73

Reading files

Reading files

Verilog sources are just ASCII text files

We read in whole files as lists of extended characters

〈character , filename, line, column〉

Inefficient, but has advantages:

Minimizes use of state

Automatic position tracking

Easy to write tests for list-based tools

Page 6 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 7 / 73

The preprocessor

The preprocessor

Verilog has a C-style preprocessor

define and undef for constants

nestable ifdef, ifndef, elsif, else

other stuff that we don’t support (like include)

vl-preprocess : echarlist → successp × echarlist

Program mode

Reuses some lexer routines

1,200 lines (about 45% comments and whitespace)

Includes 250 lines of unit tests

Page 7 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 9 / 73

The preprocessor

Preprocessor implementation

Woefully underspecified, so we try to defensively mimic Cadence

‘ifdef foo ‘define a 0
‘define myendif ‘endif ‘define b ‘a
‘myendif ‘define a 1

wire w = ‘b ;

Not a blind textual substitution

// comment about ‘ifdef
$display("The value of ‘a’ is %d\n", a);

No nice way to relate input and output

Page 8 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 11 / 73

The lexer

The lexer

The lexer is quite basic.

“Optimized” based on the first-remaining character

Verilog is pretty amenable to this

vl-lex : echarlist → successp × tokenlist

A mixture of program and logic mode

1400 lines (about 40% comments and whitespace)

Includes 400 lines of unit tests

About 40% is related to numbers

Written with some “theorems” in mind:

tokenlistp(output)

flatten(output) = input

Page 9 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 12 / 73

The lexer

Token definition

Our lexer produces a list of tokens.

Plain tokens (ws, comments, operators, punctuation, keywords)

String, real, and integer literals

Identifiers and system identifiers

Each token has

A symbolic type (which can be accessed quickly)

The echars the lexer created it from

We have some basic well-formedness checks, e.g., an integer literal should
be in the specified range.

Page 10 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 13 / 73

The lexer

Lexer utilities: literals

Reasonably-efficient utilities for handling literals

vl-matches-string-p : string × echars → bool

vl-read-literal : string × echars → prefix × remainder

vl-read-some-literal : strings × echars → prefix × remainder

vl-read-until-literal : string × echars → bool × prefix × remainder

vl-read-through-literal : string × echars → bool × prefix ×
remainder

We also prove some basic theorems about these

Page 11 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 14 / 73

The lexer

Lexer utilities: defchar

We also automate the introduction of character types. For instance:

(defchar whitespace
(or (eql x #\Space)

(eql x #\Tab)
(eql x #\Newline)
(eql x #\Page)))

Introduces efficient functions (w/ theorems):

vl-whitespace-p : characterp → bool

vl-whitespace-echar-p : echar → bool

vl-whitespace-list-p : character-listp → bool

vl-read-while-whitespace : echars → nil × prefix × remainder

Page 12 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 16 / 73

Classic recursive-descent parsing

Classic recursive-descent parsing

range ::= [expression : expression]

File in;

Token match_token(type) {
Token t = lex();
if (t.getType() == type) return t;
throw new Exception("Expected " + type);

}

Range parse_range() {
match_token(LBRACK);
Expression e1 = parse_expression();
match_token(COLON);
Expression e2 = parse_expression();
match_token(RBRACK);
return new Range(e1, e2);

}

Page 13 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 18 / 73

Classic recursive-descent parsing

Observations

A reasonable way to write parsers

follows the grammar rule quite closely

implicitly propagates errors upwards (nice)

implicitly advances through the file (nice)

Let me emphasize these last two points:

parse range can fail (by propagating an exception)

parse range changes state (the file pointer)

Not straightforward to do in ACL2.

Page 14 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 19 / 73

Classic recursive-descent parsing

Explicit state and exception handling = pain

(defun parse-range (tokens)
(mv-let (err val tokens) (match-token :LBRACK tokens)
(if err

(mv err val tokens)
(mv-let (err e1 tokens) (parse-expression tokens)
(if err

(mv err e1 tokens)
(mv-let (err val tokens) (match-token :COLON tokens)
(if err

(mv err val tokens)
(mv-let (err e2 tokens) (parse-expression tokens)
(if err

(mv err e2 tokens)
(mv-let (err val tokens) (match-token :RBRACK tokens)
(if err

(mv err val tokens)
(mv nil (make-range e1 e2) tokens))))))))))))

Page 15 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 21 / 73

The SEQ language

The SEQ language

SEQ is a macro-language for writing parsers

Makes exception-propagation implicit

Makes advancing the token list implicit

(defun parse-range (tokens)
(declare (xargs :guard (tokenlistp tokens)))
(seq tokens

(:= (match-token :LBRACK tokens))
(e1 := (parse-expression tokens))
(:= (match-token :COLON tokens))
(e2 := (parse-expression tokens))
(:= (match-token :RBRACK tokens))
(return (make-range e1 e2))))

Page 16 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 23 / 73

The SEQ language

Actions and streams

SEQ is a language for applying actions to a stream.

Actions are ACL2 expressions which return

(mv error val stream′)

Where

error is non-nil if an error has occurred,

val is the return value of this action

stream′ is the updated stream

Streams are basically any ACL2 object you wish to sequentially update

Page 17 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 25 / 73

The SEQ language

SEQ language: returns

Every seq program must end with a return statement.

Successful returns

(return (foo ...))
--->

(mv nil (foo ...) streamname)

Raw returns

(return-raw (mv "Bad!" nil streamname))
--->

(mv "Bad!" nil streamname)

Page 18 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 27 / 73

The SEQ language

SEQ language: voids

Void Statements can update the stream and cause errors

(:= (action ... args ...))
... more statements ...
--->
(mv-let ([err] [val] streamname)

(action ... args ...)
(if [err]

(mv [err] [val] streamname)
(check-not-free ([err] [val])

... more statements ...)))

Page 19 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 29 / 73

The SEQ language

SEQ language: simple binds

Simple Binds can update the stream, cause errors, and bind a name

(foo := (action ... args ...))
... more statements ...
--->
(mv-let ([err] foo streamname)

(action ... args ...)
(if [err]

(mv [err] foo streamname)
(check-not-free ([err])

... more statements ...)))

Page 20 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 31 / 73

The SEQ language

SEQ language: destructuring binds

Destructuring Binds can update the stream, cause errors, and bind many
names

((foo . bar) := (action ... args ...))
... more statements ...
--->
(mv-let ([err] [val] streamname)

(action ... args ...)
(if [err]

(mv [err] [val] streamname)
(let ((foo (car [val]))

(bar (cdr [val])))
(check-not-free ([err] [val])

... more statements ...))))

Page 21 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 33 / 73

The SEQ language

SEQ language: when and unless

When/Unless Blocks are useful for matching optional stuff

inoutdecl ::= inout nettype [signed] [range] list of port identifiers

(seq tokens
(:= (match-token :kwd-inout tokens))
(type := (parse-net-type tokens))
(when (is-token :kwd-signed tokens)
(signed := (match-token :kwd-signed tokens)))

(when (is-token :lbrack tokens)
(range := (parse-range tokens)))

(ids := (parse-list-of-port-ids tokens))
(return (make-inoutdecl type signed range ids)))

Page 22 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 35 / 73

The SEQ language

SEQ language: early returns

Early Returns are useful for choosing between alternative productions.

nonempty list of ids ::= identifier { , identifier }

(defun parse-nonempty-list-of-ids (tokens)
(seq tokens

(first := (match-token :identifier tokens))
(unless (is-token :comma tokens)
(return (list first)))

(:= (match-token :comma tokens))
(rest := (parse-nonempty-list-of-ids tokens))
(return (cons first rest))))

Page 23 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 37 / 73

The SEQ language

SEQ language: looking ahead

Arbitrary lookahead is trivial when you are traversing a list. For stobjs,
you would need some kind of unget operation.

(defun parse-nonempty-list-of-ids (tokens)
(seq tokens

(first := (match-token :identifier tokens))
(when (and (is-token :comma tokens)

(is-token :identifier (cdr tokens)))
(:= (match-token :comma tokens))
(rest := (parse-nonempty-list-of-ids tokens)))

(return (cons first rest))))

Page 24 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 39 / 73

The SEQ language

SEQ language: backtracking

Backtracking is also relatively straightforward by ”trapping” errors.

(defun parse-foo-or-bar (tokens)
(mv-let (erp foo updated-tokens)

(parse-foo tokens)
(if (not erp)

(mv nil foo updated-tokens)
(parse-bar tokens))))

(defun parse-foo-or-bar (tokens)
(seq-backtrack tokens

(parse-foo tokens)
(parse-bar tokens)))

Page 25 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 41 / 73

Final touches

Sensible error reporting for primitives

My match-token and is-token are macros instead of functions.

For error reporting, we can introduce our parsing functions with defparser
instead of defun.

(defparser foo (... tokens)
body)
--->
(defun foo (... tokens)
(let ((__function__ ’foo))
(declare (ignorable __function__))
body))

Page 26 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 43 / 73

Final touches

(defmacro is-token (type &optional (tokens ’tokens))
(declare (xargs :guard (tokentypep type)))
‘(and (consp ,tokens)

(eq (token-type (car ,tokens)) ,type)))

(defmacro match-token (type &optional (tokens ’tokens))
(declare (xargs :guard (tokentypep type)))
(let ((tokens ,tokens))

(if (not (consp tokens))
(mv [[error in __function__, unexpected eof]]

nil tokens)
(let ((token1 (car tokens)))
(if (not (eq ,type (token-type token1)))

(mv [[error in __function__ at [place] ...]]
nil tokens)

(mv nil token1 (cdr tokens)))))))

Page 27 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 45 / 73

Final touches

Efficiency note

Creating error strings was really slow.

Consing together error structures instead reduced parser time by 80% even
though there isn’t that much backtracking.

(list "foo is ~x0 and bar is ~x1.~%" foo bar)
vs.

(concatenate ’string "foo is "
(coerce (explode-atom foo 10) ’string)
"and bar is "
(symbol-name bar)
".~%")

Page 28 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 47 / 73

Final touches

More syntactic sugar

Defparser generates a macro alias with implicit tokens
And automates the tokenlistp guard

(defparser parse-range (tokens)
(seq tokens

(:= (match-token :LBRACK))
(e1 := (parse-expression))
(:= (match-token :COLON))
(e2 := (parse-expression))
(:= (match-token :RBRACK))
(return (make-range e1 e2))))

(defparser parse-foo (tokens)
(seq tokens

(range := (parse-range))
...))

Page 29 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 49 / 73

Logic-mode parsing

Logic-mode parsing

With 170 defparser functions, we need to automate theorem creation.

We classify our parsers as having various properties, and use these
properties to decide what theorems to prove about them.

Sometimes, combinations of properties can lead to better theorems.

Net effect: logic mode and guard verification are fairly easy.

Page 30 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 51 / 73

Logic-mode parsing

Termination behavior

Every defparser we’ve written is at least weakly decreasing:

(<= (acl2-count (third (parse-foo)))
(acl2-count tokens))

Most are also strongly decreasing:

(implies (not (first (parse-foo)))
(< (acl2-count (third (parse-foo)))

(acl2-count tokens)))

While some others are only strong on value:

(implies (second (parse-foo))
(< (acl2-count (third (parse-foo)))

(acl2-count tokens)))

Page 31 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 53 / 73

Logic-mode parsing

Failure behavior

Most (all?) of our parsers fail gracefully:

(implies (first (parse-foo))
(not (second (parse-foo))))

But some never fail: (e.g., optional or zero+ productions)

(not (first (parse-foo)))

Page 32 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 55 / 73

Logic-mode parsing

Result characterization

On success, we usually have some idea what the result ought to be:

(implies (and (not (first (parse-foo)))
...guards...)

(foop (second (parse-foo))))

We’ve also found it useful to know if the result is a true-listp.

(true-listp (second (parse-foo)))

It’s also useful to know if resultp-of-nil is true.

If (foop nil) and fails gracefully, omit first hyp.

If never fails, omit first hyp.

Page 33 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 57 / 73

Logic-mode parsing

Actual examples (verbatim)

(defparser vl-parse-range (tokens)
:result (vl-range-p val)
:resultp-of-nil nil
:fails gracefully
:count strong
(seq tokens

(:= (vl-match-token :vl-lbrack))
(left := (vl-parse-expression))
(:= (vl-match-token :vl-colon))
(right := (vl-parse-expression))
(:= (vl-match-token :vl-rbrack))
(return (vl-range left right))))

Page 34 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 59 / 73

Logic-mode parsing

Actual examples (verbatim)

(defparser vl-parse-optional-drive-strength (tokens)
:result (vl-maybe-gatestrength-p val)
:resultp-of-nil t
:fails never
:count strong-on-value
(mv-let (erp val explore)

(vl-parse-drive-strength)
(if erp

(mv nil nil tokens)
(mv nil val explore))))

Page 35 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 61 / 73

Logic-mode parsing

Actual examples (verbatim)

(defparser vl-parse-list-of-param-assignments (tokens)
:result (vl-param-assignment-tuple-list-p val)
:resultp-of-nil t
:true-listp t
:fails gracefully
:count strong
(seq tokens

(first := (vl-parse-param-assignment))
(when (vl-is-token? :vl-comma)
(:= (vl-match-token :vl-comma))
(rest := (vl-parse-list-of-param-assignments)))

(return (cons first rest))))

Page 36 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 63 / 73

Logic-mode parsing

Mutual recursion termination problems

We can’t expand definitions of mutually-recursive functions until they’ve
been admitted, so this doesn’t work:

(vl-mutual-recursion
(defparser vl-parse-lvalue (tokens)
...)

(defparser vl-parse-list-of-lvalues (tokens)
(declare ...)
(seq tokens

(first := (vl-parse-lvalue))
...
(rest := (vl-parse-list-of-lvalues tokens))
...))

We hackishly extend SEQ with :s= and :w= to address this.

Page 37 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 65 / 73

The parser

The parser

vl-parse : tokenlist → successp × modulelist

Entirely logic mode, guards verified

7,800 lines (more than half comments/whitespace)

1,400 lines of unit tests (want more)

Almost 1
3 deals with expressions and statements (mutual recursion)

Similar to Terry’s original parser (Common Lisp)

Loop is about the only thing seq doesn’t handle well

Backtracking is quite nice

Page 38 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 67 / 73

The parser

Parse trees

We introduce parse trees in a separate file (parsetree.lisp) which has few
dependencies.

Mostly we just introducing various aggregates, for instance:

(defaggregate regdecl
(name signedp range arrdims initval atts)
:tag :regdecl
:require
((stringp-of-regdecl->name (stringp name))
(booleanp-of-regdecl->signedp (booleanp signedp))
(maybe-range-p-of-regdecl->range (maybe-range-p range))
(rangelist-p-of-regdecl->arrdims (rangelist-p arrdims))
(maybe-expr-p-of-regdecl->initval (maybe-expr-p initval))
(atts-p-of-regdecl->atts (atts-p atts))))

Page 39 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 69 / 73

The parser

Parse tree implementation

Defaggregate and deflist get me pretty far, but they don’t do everything.

Not useful in mutually-recursive cases

I need to write a good sum-of-products macro

For now, some custom-written recognizers, constructors, and accessors to
handle these cases — ugh!

2,100 lines (35% ws/comments), all logic-mode, guards-verified, lots of
basic theorems (mostly automatic)

Used by our translation process

Completeness, non-conflicting names, reasonable constructs

Unparameterization, expression simplification, e-ification

Page 40 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 71 / 73

Demo

Demo

Page 41 (Centaur Technology) A Verilog Parser in ACL2 September 10, 2008 73 / 73

	Introduction
	Reading files
	The preprocessor
	The lexer
	Classic recursive-descent parsing
	The SEQ language
	Final touches
	Logic-mode parsing
	The parser
	Demo

