
Mechanized Operational
Semantics

J Strother Moore
Department of Computer Sciences

University of Texas at Austin

Marktoberdorf Summer School 2008

(Lecture 1: The Logic (ACL2))

1

Caveat

The most widely accepted meaning of

Operational Semantics today is Plotkin’s

“Structural Operational Semantics” (SOS)

(1981) in which the semantics is presented

as a set of inference rules on syntax and

“configurations” (states) defining the valid

transitions.
2

But in these lectures I take an older

approach perhaps best called interpretive

semantics in which the semantics of a piece

of code is given by a recursively defined

interpreter on the syntax and a state.

3

I suspect the older approach came from

McCarthy who wrote “the meaning of a

program is defined by its effect on the state

vector,” in “Towards a Mathematical

Science of Computation” (1962).

4

The interpretive approach was used with

mechanized support in A Computational

Logic (Boyer and Moore, 1979) to specify

and verify an expression compiler. The low

level machine was defined as a recursive

function on programs (sequence of

instructions) against a state consisting of a

push down stack and an environment

assigning values to variables.

5

Plotkin rightly states that the interpretive

approach tends to produce large and

possibly unweildy states. Procedure call

and non-determinism make things worse.

This is mitigated by the presence of a

mechanized reasoning system. Interpretive

semantics also confer certan advantages we

will discuss.

6

The Boyer-Moore community has used

operational semantics (in the “interpretive”

sense) with great success since the

mid-1970s.

So what you’re about to see is an

old-fashioned but effective treatment of

Operational Semantics.

End of Caveat

7

Outline

Lecture 1: The Logic (ACL2)

Lecture 2: An Operational Semantics

Lecture 3: Direct Code Proofs

Lecture 4: Inductive Assertion Proofs

Lecture 5: Extended Example

8

A Computational Logic

for

Applicative Common Lisp

• functional programming language

• mathematical logic

• mechanized theorem prover

for describing and analyzing digital systems

9

A Computational Logic

for

Applicative Common Lisp

10

A Computational Logic

for

Applicative Common Lisp

11

A Computational Logic

for

Applicative Common Lisp

12

ACL

ACL

=

ACL2

13

ACL2

• functional programming language ⇐

• mathematical logic

• mechanized theorem prover

14

A Formal Logic

• syntax

• axioms

• rules of inference

• semantics

15

rule of inference

main theorem

proof

axiom

theorem

key lemma

16

For Those Who Know Logic

ACL2 is a first-order, quantifier-free,

untyped logic of total recursive functions.

17

For Those Who Know Logic

ACL2 is a first-order1, quantifier-free2,

untyped3 logic of total4 recursive functions.

1 But see functional-instantiation.
2 But see defchoose.
3 But see guard.
4 But see defpun.

18

Example Terms

ACL2 term traditional notation

(sqrt (log 2 i)) sqrt(log(2, i))

√

log
2
i

(+ x (* 3 (expt y 2))) x+ 3 × y2

(cons (car x) rest) cons(car(x), rest)

19

Whitespace Is Ok

(firstn (length (terminal-substring j dt)) pat)

20

Whitespace Is Ok

(firstn (length (terminal-substring j dt))

pat)

21

Whitespace Is Ok

(firstn (length

(terminal-substring j dt))

pat)

22

Whitespace Is Ok

(firstn (length

(terminal-substring

j

dt))

pat)

23

Whitespace Is Ok

(firstn

(length

(terminal-substring

j

dt))

pat)

24

Data Types

ACL2 supports five disjoint data types:

• numbers

• characters

• strings

• symbols

• pairs

25

About T and NIL

T and NIL are used as the “truth values”

true and false.

NIL is also used as the “terminal marker”

on nested pairs representing lists. (More

later.)

Informally, “NIL is the empty list.”

26

But T and NIL are symbols!

27

About Pairs
< x,< y,< z,nil>>>

•

ւց

x
•

ւց

y
•

ւց

z nil

(x y z)

28

Atoms

An atom is any ACL2 object other than a

pair.

So here are some atoms: 123, nil, COLOR.

Here is a non-atom: (PUSH 3)

29

((PUSH 3) (LOAD 2) (ADD))

ADD

PUSH

3 NIL LOAD

2 NIL NIL NIL

30

Primitive Functions

• (cons x y) – the ordered pair 〈x, y〉

• (car x) – left component of x, if x is a

pair; else nil

• (cdr x) – right component of x, if x is

a pair; else nil

• (consp x) – t if x is a pair; else nil

31

(cdr (cdr (cdr x)))
ADD NIL(cons)

PUSH

3 NIL LOAD

2 NIL NIL NILADD

(car (cdr (car (cdr x))))

car cdr

x

(car (car x))

32

Axioms

(car (cons x y)) = x

(cdr (cons x y)) = y

(consp x) = t ∨ (consp x) = nil

(consp (cons x y)) = t

(consp x) = nil → (car x) = nil

33

(consp x) = nil → (cdr x) = nil

(consp x) = t → (cons (car x) (cdr x)) = x

(symbolp x) = t → (consp x) = nil

(integerp x) = t → (consp x) = nil

34

Primitive Functions (Continued)

• (equal x y) – t if x is y; else nil

• (if x y z) – if x is t then y; else z

(non-Boolean x are treated as t)

• (+ x y) – sum of x and y

(non-numbers are treated as 0)

35

• (- x y) – difference of x and y

(non-numbers are treated as 0)

• (* x y) – product of x and y

(non-numbers are treated as 0)

• (zp x) – t if x is 0; else nil

(non-naturals are treated as 0!)

36

Defining Functions

(defun endp (x) (not (consp x)))

(defun atom (x) (not (consp x)))

(defun not (p) (if p nil t))

(defun and (p q) (if p q nil))

(defun or (p q) (if p p q))

37

(defun implies (p q)

(if p (if q t nil) t))

(defun iff (p q)

(and (implies p q) (implies q p)))

(defun natp (x)

(and (integerp x)

(<= 0 x)))

38

The Ordinals

The ordinals are a well-ordered extension of

the natural numbers.

0 ≺ 1 ≺ 2 ≺ . . .

39

The Ordinals

The ordinals are a well-ordered extension of

the natural numbers.

0 ≺ 1 ≺ 2 ≺ . . . ≺ ω

40

The Ordinals

The ordinals are a well-ordered extension of

the natural numbers.

0 ≺ 1 ≺ 2 ≺ . . . ≺ ω ≺ ω + 1

41

The Ordinals

The ordinals are a well-ordered extension of

the natural numbers.

0 ≺ 1 ≺ 2 ≺ . . . ≺ ω ≺ ω+1 ≺ ω+2 ≺ . . .

42

The Ordinals

The ordinals are a well-ordered extension of

the natural numbers.

0 ≺ 1 ≺ 2 ≺ . . . ≺ ω ≺ ω+1 ≺ ω+2 ≺ . . .

. . . ≺ ω × 2

43

The Ordinals

The ordinals are a well-ordered extension of

the natural numbers.

0 ≺ 1 ≺ 2 ≺ . . . ≺ ω ≺ ω+1 ≺ ω+2 ≺ . . .

. . . ≺ ω × 2 ≺ ω × 2 + 1 ≺ . . .

44

The Ordinals

The ordinals are a well-ordered extension of

the natural numbers.

0 ≺ 1 ≺ 2 ≺ . . . ≺ ω ≺ ω+1 ≺ ω+2 ≺ . . .

. . . ≺ ω × 2 ≺ ω × 2 + 1 ≺ . . .

. . . ≺ ω2

45

The Ordinals

The ordinals are a well-ordered extension of

the natural numbers.

0 ≺ 1 ≺ 2 ≺ . . . ≺ ω ≺ ω+1 ≺ ω+2 ≺ . . .

. . . ≺ ω × 2 ≺ ω × 2 + 1 ≺ . . .

. . . ≺ ω2 ≺ . . . ≺ ω3 ≺ . . .

46

The Ordinals

The ordinals are a well-ordered extension of

the natural numbers.

0 ≺ 1 ≺ 2 ≺ . . . ≺ ω ≺ ω+1 ≺ ω+2 ≺ . . .

. . . ≺ ω × 2 ≺ ω × 2 + 1 ≺ ω × 2 + 2 . . .

. . . ≺ ω2 ≺ . . . ≺ ω3 ≺ . . .

. . . ≺ ωω

47

The Ordinals

The ordinals are a well-ordered extension of

the natural numbers.

0 ≺ 1 ≺ 2 ≺ . . . ≺ ω ≺ ω+1 ≺ ω+2 ≺ . . .

. . . ≺ ω × 2 ≺ ω × 2 + 1 ≺ ω × 2 + 2 . . .

. . . ≺ ω2 ≺ . . . ≺ ω3 ≺ . . .

. . . ≺ ωω ≺ . . . ≺ ωω
ωω

...

= ǫ0

48

Ordinals below ǫ0 can be represented with

lists (Cantor’s canonical form).

For example,

ωω+3 × 27 + ω100 + ω3 × 238 + ω × 3 + 798

is represented by

((((1 . 1) . 3) . 27) (100 . 1) (3

. 238) (1 . 3) . 798)

49

Ordinals below ǫ0 can be represented with

lists (Cantor’s canonical form).

The recognizer for such ordinals can be

defined recursively.

The “less than” relation, ≺, can be defined

recursively.

50

Primitive Functions (continued)

• (o-p x) – t if x represents an ordinal

below ǫ0; else nil

• (o< x y) – the well-founded ordering ≺

on ordinals below ǫ0

51

Induction and Recursion

Recursive definitions are admissible only if

some measure of the arguments can be

proved to decrease in a well-founded

ordering, typically some ordinal measure

ordered by o<.

52

Inductions are justified by a well-founded

ordering. Given a measure and ordering,

you can assume any “smaller” instance of

the conjecture being proved.

Induction and recursion are duals.

53

(defun len (x)

(if (endp x)

0

(+ 1 (len (cdr x)))))

(len ’(a b c)) ⇒ 3

(‘⇒’ means “evaluates to (reduces under

the axioms to the constant)”.)

54

(defun len (x)

(if (endp x)

0

(+ 1 (len (cdr x)))))

Why is this admissible?

55

(defun len (x)

(if (endp x)

0

(+ 1 (len (cdr x)))))

Theorem:

¬ endp(x) → size(cdr(x)) ≺ size(x)

56

(defun len (x)

(if (endp x)

0

(+ 1 (len (cdr x)))))

Theorem:

(implies (not (endp x))

(o< (size (cdr x))

(size x)))

57

Induction (suggested by (len x))

To prove ψ(x, y) it is sufficient to prove:

Base Case:

(implies (endp x) ψ(x, y))

Induction Step:

(implies (and (not (endp x))

ψ((cdr x), α))

ψ(x, y))

58

Every total recursive function suggests an

induction.

We won’t discuss it further, but that is key

to the automation of induction.

59

(defun nth (n x)

(if (zp n)

(car x)

(nth (- n 1) (cdr x))))

(nth 3 ’(A B C D E)) ⇒ D.

60

(defun char (s n)

(nth n (coerce s ’list)))

(char "Hello" 1) ⇒ #\e

(the lowercase character ‘e’).

61

(defun update-nth (n v x)

(if (zp n)

(cons v (cdr x))

(cons (car x)

(update-nth (- n 1) v (cdr x)))))

(update-nth 3 ’X ’(A B C D E))

⇒ (A B C X E).

62

(defun member (e x)

(if (endp x)

nil

(if (equal e (car x))

x

(member e (cdr x)))))

(member 3 ’(1 2 3 4 5)) ⇒ (3 4 5).

63

(defun repeat (x n)

(if (zp n)

nil

(cons x (repeat x (- n 1)))))

(repeat t 4) ⇒ (t t t t)

64

(defun append (x y)

(if (endp x)

y

(cons (car x)

(append (cdr x) y))))

(append ’(A B C) ’(D E))

⇒ (A B C D E).

65

(equal (append (append a b) c)

(append a (append b c)))

66

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

67

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (append (append a b) c)

(append a (append b c)))

68

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (append b c)

(append a (append b c)))

69

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (append b c)

(append a (append b c)))

70

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (append b c)

(append b c))

71

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (append b c)

(append b c))

72

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).

T

73

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (append (append a b) c)

(append a (append b c)))

74

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (append (cons (car a)

(append (cdr a) b)) c)

(append a (append b c)))

75

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (append (cons (car a)

(append (cdr a) b)) c)

(append a (append b c)))

76

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(append (append (cdr a) b) c))

(append a (append b c)))

77

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(append (append (cdr a) b) c))

(append a (append b c)))

78

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(append (append (cdr a) b) c))

(cons (car a)

(append (cdr a) (append b c))))

79

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(append (append (cdr a) b) c))

(cons (car a)

(append (cdr a) (append b c))))

80

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal

(append (append (cdr a) b) c)

(append (cdr a) (append b c)))

81

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (append (append (cdr a) b) c)

(append (cdr a) (append b c)))

82

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (append (append (cdr a) b) c)

(append (cdr a) (append b c)))

83

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

T

84

(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Q.E.D.

85

Boyer-Moore Project

Kaufmann

1960 1970 1980 1990 2000

McCarthy’s ‘‘Theory of Computation’’

ACL2

Edinburgh Pure Lisp Theorem Prover

A Computational Logic

NQTHM

Boyer

Moore

86

Q.E.D.

of ‘‘books’’ of definitions,
database composed

theorems, and advice

User

proofs

M
em

ory
G

ates
A

rith V
ectors

prover

proposed definitions
conjectures and
advice

theorem

87

Irrelevance

Equality

Destructor Elimination

User

Generalization

Induction

Simplification

pool

Elimination of

formula

88

Irrelevance

User

Equality

Destructor Elimination

Generalization

Induction

Elimination of

congruence−based rewriting

evaluation
propositional calculus
BDDs
equality
uninterpreted function symbols
rational linear arithmetic
rewrite rules
recursive definitions
back− and forward−chaining
metafunctions

Simplification

89

ACL2 Demo 1

90

Books

The ACL2 user develops books that tailor

the system to find proofs in a given

domain.

The user provides proof sketches in the

form of sequences of key lemmas.

The system fills in the gaps.

91

This enables proof maintenance.

Minor modifications to previously proved

theorems (or previously analyzed formal

models) can often be verified without user

intervention – because the books encode a

strategy not a proof.

92

Next Time

An operational semantics for a simple

language.

93

