

Graphite Table Format Page 1 of 13
Martin Hosken and Sharon Correll July 15, 2015 Rev: 41

Graphite Table Format
Extending TrueType for Graphite

Version 4

Martin Hosken and Sharon Correll,
SIL Non-Roman Script Initiative (NRSI)

Introduction
The Graphite font table format is structured in order that a Graphite binary description may be
incorporated into a TrueType font. Thus the binary format uses the TrueType table structure,
identically to how it is used in a TrueType font. The only difference between using an external
file containing Graphite binary information in tables, and inserting the binary information into
tables in the font is that tables are considered local to their file and are considered to override
those found in the font file. This allows there to be multiple, independent descriptions held in
separate files. Those independent descriptions would have to be merged, in a way described in
this document, if they were to be held together in the same font file or binary file.

The description consists of a set of table descriptions. The format of a file follows that of a
TrueType font containing only those tables pertinent to the description (i.e. for a separate binary
description, those tables listed here).

As is standard for all TrueType tables, the data is in big-endian format (most significant byte
first).

Version
This file describes version 4.0 of the Graphite font table specification. Modifications from
previous versions are indicated in the “Version notes” column of the various tables.

Tables
This document describes several additional TrueType table types. The “Silf” and “Sile” tables
are unique to the needs of Graphite, whilst “Gloc” and “Glat” provide an extended glyph
attribute mechanism. The “Feat” table is based very closely on the GX “feat” table. (If
necessary the tables could be restructured to be stored inside the single “Silf” table.) In addition,
use is made of the “name” table type.

Graphite Table Format Page 2 of 13
Martin Hosken and Sharon Correll July 15, 2015 Rev: 41

Glat

The Glat table type is used for storing glyph attributes. Each glyph may be considered to have a
sparse array of, at the most, 65536 16-bit signed attributes. The Glat table is the mechanism by
which they are stored.

The Glat table consists of a table header and an array of Glat_entry items:

Type Name Description Version notes

FIXED version Table version: 00020000 4.0 – changed from 0001000 to
00020000

Glat_entry[] entries Glyph attribute entries

Table 1: Glat

The glyph attributes associated with a particular glyph are identified by number and value. To
conserve space, this storage is run-length encoded. Thus a glyph will have a series of
Glat_entrys corresponding to each non-contiguous set of attributes. The structure of a
Glat_entry is:

Type Name Description Version notes

SHORT attNum Attribute number of first attribute 4.0 – changed from BYTE to SHORT

SHORT num Number of attributes in this run 4.0 – changed from BYTE to SHORT

SHORT attributes[] Array of num attributes

Table 1a: Glat_entry

Notice that all glyph attributes are 16-bit signed values. If a 32-bit value is required, then two
attributes should be assigned and joined together by the application.

Attribute numbers are application specific.

Note that if the font does not require more than 256 glyph attributes, version 1 of the Glat table
will be generated, which is defined as follows.

Type Name Description Version notes

FIXED version Table version: 00010000

Glat_entry[] entries Glyph attribute entries

Table 2: Glat version 1

Type Name Description Version notes

BYTE attNum Attribute number of first attribute

BYTE num Number of attributes in this run

SHORT attributes[] Array of num attributes

Table 2a: Glat_entry, version 1

Gloc

The Gloc table is used to index the Glat table. It is structured identically to the loca table type,
except that it has a header.

Graphite Table Format Page 3 of 13
Martin Hosken and Sharon Correll July 15, 2015 Rev: 41

TODO: add a field indicating the number of glyphs in the table (the current dependence on the
Silf table is not architecturally clean).

Type Name Description Version notes

FIXED version Table version: 00010000

USHORT flags bit 0 = 1 for Long format, = 0 for short format
bit 1 = 1 for attribute names, = 0 for stripped

USHORT numAttribs Number of attributes

USHORT/ULONG locations[] Offsets into Glat table for each glyph; (number
of glyph IDs + 1) of these

USHORT attribIds[] Debug id for each attribute

Table 3: Gloc

The flags entry contains a bit to indicate whether the locations array is of type USHORT or
ULONG. The locations array is identically structured to that of the loca table. There is one entry
per glyph and an extra entry to identify the length of the final glyph’s attribute entries. Offsets are
given to a Glat_entry in the Glat table. The second bit indicates whether there is an
attribIds array at the end of this table. If there is, then it contains name IDs for each attribute.
If this bit is not set, then there is no array and the table ends after the locations array.

NOTE: as of version 2 of the Silf table, the values of the breakweight attribute are interpreted as
follows:

 BREAK_WHITESPACE = 10
 BREAK_WORD = 15
 BREAK_INTRA = 20
 BREAK_LETTER = 30
 BREAK_CLIP = 40

Feat

Graphite stores features in a table whose format is very similar to the GX feat table. This makes
reference to the name table which is use for storing feature names and feature value names.

Type Name Description Version notes

FIXED version Table version: 00020000 3.0 – changed from
00010000 to 00020000

USHORT numFeat Number of features

USHORT reserved

ULONG reserved

FeatureDefn features[] Array of numFeat features

FeatureSettingDefn featSettings[] Array of feature setting values, indexed
by offset

Table 4: Feat

Graphite Table Format Page 4 of 13
Martin Hosken and Sharon Correll July 15, 2015 Rev: 41

Type Name Description Version notes

ULONG id Feature ID number 3.0 – added

USHORT numSettings Number of settings

USHORT reserved 3.0 – inserted

ULONG offset Offset into featSettings list

USHORT flags

USHORT label Index into name table for UI label

Table 5: FeatureDefn

Type Name Description Version notes

SHORT value Feature setting value

USHORT label Index into name table for UI label

Table 6: FeatureSettingDefn

Graphite Table Format Page 5 of 13
Martin Hosken and Sharon Correll July 15, 2015 Rev: 41

Silf

The “Silf” table will be used for storing rules and actions for the various types of tables in a
rendering description. The structure of the Silf table is:

Type Name Description Version notes

FIXED version Table version: 00030000 2.0 – changed to 00020000;
3.0 – changed to 00030000

FIXED compilerVersion Actual version of the compiler that
generated this font

3.0 – added

USHORT numSub Number of SIL subtables

USHORT reserved

ULONG offset[] Array of numSub offsets to the
subtables relative to the start of this
table

SIL_Sub tables[] Array of independent rendering
description subtables

Table 7: Silf

Since one TrueType file may hold multiple independent rendering descriptions, each rendering
description is described in a subtable. The subtable contains all that is necessary to describe the
rendering of one set of writing systems.

Type Name Description Version notes

FIXED ruleVersion Version of stack-machine language used in rules 3.0 – added

USHORT passOffset offset of oPasses[0] relative to start of sub-table 3.0 – added

USHORT pseudosOffset offset of pMaps[0] relative to start of sub-table 3.0 – added

USHORT maxGlyphID Maximum valid glyph ID (including line-break &
pseudo-glyphs)

SHORT extraAscent Em-units to be added to the font’s ascent

SHORT extraDescent Em-units to be added to the font’s descent

BYTE numPasses Number of rendering description passes

BYTE iSubst Index of first substitution pass

BYTE iPos Index of first Positioning pass

BYTE iJust Index of first Justification pass

BYTE iBidi Index of first pass after the bidi pass(must be <=
iPos); 0xFF implies no bidi pass

BYTE flags Bit 0: True (1) if there is any start-, end-, or cross-line
contextualization
Bit 1: True (1) if cross-line contextualization can be
ignored for optimization

Bits 2-4: space contextual flags

Bit 5: collision pass present

4.0 – added Bit 1
5.0 – added Bit 5

BYTE maxPreContext Max range for preceding cross-line-boundary
contextualization

BYTE maxPostContext Max range for following cross-line-boundary
contextualization

BYTE attrPsuedo Glyph attribute number that is used for actual glyph

Graphite Table Format Page 6 of 13
Martin Hosken and Sharon Correll July 15, 2015 Rev: 41

ID for a pseudo glyph

BYTE attrBreakWeight Glyph attribute number of breakweight attribute

BYTE attrDirectionality Glyph attribute number for directionality attribute

BYTE attrMirroring Glyph attribute number for mirror.glyph
(mirror.isEncoded directly after)

2.0 – added;
4.0 – used

BYTE attrSkipPasses Glyph attribute of bitmap indicating key glyphs for
pass optimization

2.0 – added;
4.0 – used

BYTE numJLevels Number of justification levels; 0 if no justification 2.0 – added

Justification
-Level

jLevels[] Justification information for each level. 2.0 – added

USHORT numLigComp Number of initial glyph attributes that represent
ligature components

BYTE numUserDefn Number of user-defined slot attributes

BYTE maxCompPerLig Maximum number of components per ligature

BYTE direction Supported direction(s)

BYTE reserved

BYTE reserved

BYTE reserved

BYTE reserved 2.0 – added

BYTE numCritFeatures Number of critical features 2.0 – added

USHORT critFeatures[] Array of critical features 2.0 – added

BYTE reserved 2.0 – added

BYTE numScriptTag Number of scripts this subtable supports

ULONG scriptTag[] Array of numScriptTag script tags

USHORT lbGID Glyph ID for line-break psuedo-glyph

ULONG oPasses[] Offets to passes relative to the start of this subtable;
numPasses + 1 of these

USHORT numPseudo Number of Unicode -> pseudo-glyph mappings

USHORT searchPseudo (max power of 2 <= numPseudo) *
sizeof(PseudoMap)

USHORT pseudoSelector log2(max power of 2<= numPseudo)

USHORT pseudoShift numPseudo - searchPseudo

PseudoMap pMaps[] Mappings between Unicode and pseudo-glyphs in
order of Unicode

ClassMap classes Classes object storing replacement classes used in
actions

SIL_Pass passes[] Array of passes

Table 8: SIL_Sub

Each justification level has several glyph attributes associated with it.

This structure was new as of version 2.0.

Type Name Description Version notes

BYTE attrStretch Glyph attribute number for justify.X.stretch

BYTE attrShrink Glyph attribute number for justify.X.shrink

BYTE attrStep Glyph attribute number for justify.X.step

Graphite Table Format Page 7 of 13
Martin Hosken and Sharon Correll July 15, 2015 Rev: 41

BYTE attrWeight Glyph attribute number for justify.X.weight

BYTE runto Which level starts the next stage

BYTE reserved

BYTE reserved

BYTE reserved

Table 9: JustificationLevel

A pseudo-glyph is a glyph which contains no font metrics (it has a GID greater than the
numGlyphs entry in the maxp table) but is used in the rendering process. Each pseudo-glyph has
an attribute which is the glyph ID of a real glyph which will be used to actually render the glyph.
The pseudo-glyph map contains a mapping between Unicode and pseudo-glyph number:

Type Name Description Version notes

ULONG unicode Unicode codepoint 2.0 – changed from USHORT to ULONG

USHORT nPseudo Glyph ID of pseudo-glyph

Table 10: PseudoMap

The ClassMap stores the replacement class information for the passes in this description.
Replacement classes are used during substitution where a glyph id is looked up in one class and
the glyph ID at the corresponding index in another class is substituted. The difficulty with the
storage of such classes is in looking up a glyph ID in an arbitrarily ordered list. One approach is
to use a linear search; this is very slow, but is stored very simply. Another approach is to order
the glyphs in the class and to store the index against the glyph. Both approaches are supported in
the ClassMap table structure:

Type Name Description Version notes

USHORT numClass Number of replacement classes

USHORT numLinear Number of linearly stored replacement classes

USHORT oClass[] Array of numClass + 1 offsets to class arrays from the
beginning of the class map

USHORT glyphs[] Glyphs for linear classes

LookupClass lookups[] An array of numClass – numLinear lookups

Table 11: ClassMap

The LookupClass stores a fast lookup association between glyph ID and index. Each lookup
consists of an ordered list of glyph IDs with the corresponding index for that glyph. The number
of elements in the lookup is specified by numIds along with a search Range and shift to initialize
a fast binary search engine:

Type Name Description Version notes

USHORT numIDs Number of elements in the lookup

USHORT searchRange (max power of 2<= numIDs) * 4

USHORT entrySelector log2(max power of 2<= numIDs)

USHORT rangeShift numIds*4 – searchRange

LookupPair lookups[] lookups; there are numIDs of these

Table 12: LookupClass

Graphite Table Format Page 8 of 13
Martin Hosken and Sharon Correll July 15, 2015 Rev: 41

Each element in the lookup consists of a glyphId and the corresponding index in the original
ordered list.

Type Name Description Version notes

USHORT glyphId glyph id to be compared

USHORT index index corresponding to this glyph id in ordered list

Table 13:LookupPair

Pass

Each processing pass consists of a finite state machine description for rule finding, and the
actions that are executed when a rule is matched.

Type Name Description Version notes

BYTE flags Bits 0-2 = collisionFix; bits 3-4 - autoKern 5.0 - added

BYTE maxRuleLoop MaxRuleLoop for this pass

BYTE maxRuleContext Number of slots of input needed to run this pass

BYTE maxBackup Number of slots by which the following pass needs to
trail this pass (ie, the maximum this pass is allowed to
back up)

USHORT numRules Number of action code blocks

 5.0 – added

USHORT fsmOffset offset to numRows relative to the beginning of the
SIL_Pass block

2.0 – inserted ;
3.0 – use for
fsmOffset

ULONG pcCode Offset to start of pass constraint code from start of
subtable (*passConstraints[0]*)

2.0 - added

ULONG rcCode Offset to start of rule constraint code from start of
subtable (*ruleConstraints[0]*)

ULONG aCode Offset to start of action code relative to start of
subtable (*actions[0]*)

ULONG oDebug Offset to debug arrays (*dActions[0]*); equals 0 if
debug stripped

USHORT numRows Number of FSM states

USHORT numTransitional Number of transitional states in the FSM (length of
states matrix)

USHORT numSuccess Number of success states in the FSM (size of
oRuleMap array)

USHORT numColumns Number of FSM columns

USHORT numRange Number of contiguous glyph ID ranges which map to
columns

USHORT searchRange (maximum power of 2 <=
numRange)*sizeof(Pass_Range)

USHORT entrySelector log2(maximum power of 2 <= numRange)

USHORT rangeShift numRange*sizeof(Pass_Range)-searchRange

Pass_Range ranges[] Ranges of glyph IDs for this FSM; *numRange* of

Graphite Table Format Page 9 of 13
Martin Hosken and Sharon Correll July 15, 2015 Rev: 41

these

USHORT oRuleMap[] Maps from success state to offset into ruleMap array
from start of array. First item corresponds to state #
(numRows – numSuccess); ie, non-success states are
omitted. [0xFFFF implies rule number is equal to state
number (i.e. no entry in ruleMap) – NOT
IMPLEMENTED]

USHORT ruleMap[] Array of rule numbers corresponding to an success
state number

BYTE minRulePreContex
t

Minimum number of items in any rule’s context before
the first modified rule item

BYTE maxRulePreConte
xt

Maximum number of items in any rule’s context before
the first modified rule item

SHORT startStates[] Array of size (maxRulePreContext –
minRulePreContext + 1), indicating the start state in
the state machine based on how many pre-context
items a rule has

USHORT ruleSortKeys[] Array of *numRules* sort keys, indicating precedence
of rules

BYTE rulePreContext[] Array of *numRules* items indicating the number of
items in the context before the first modified item, one
for each rule

BYTE collisionThreshold Minimum movement perceived as such by the collision
fixing algorithm

2.0 – inserted,
5.0 – used

USHORT pConstraint Length of passConstraint block 2.0 – added

USHORT oConstraints[] numRules + 1 offsets to constraint code blocks relative
to *rcCode* and start of subtable

USHORT oActions[] numRules + 1 offsets to action code blocks relative to
aCode and start of subtable

USHORT stateTrans[][] Array of *numTransitional* rows of *numColumns*
state transitions.

BYTE reserved 2.0 – inserted

BYTE passConstraints[] Sequences of constraint code for pass-level
constraints

2.0 – added

BYTE ruleConstraints[] Sequences of constraint code for rules

BYTE actions[] Sequences of action code

USHORT dActions[] Name index for each action for documentation
purposes. 0 = stripped1. numRules of these

USHORT dStates[] Name index for each intermediateFSM row/state for
debugging. 0 = stripped. Corresponds to the last
numRows – numRules

USHORT dCols[] Name index for each state (numRows of these)

Table 14: SIL_Pass

Notice that the ranges array has fast lookup information on the front to allow for the quick
identification of which range a particular glyph id is in. Each range consists of the first and last
glyph id in the range.

1 Should debug tables go at the end, and be marked via a flag as per Gloc?

Graphite Table Format Page 10 of 13
Martin Hosken and Sharon Correll July 15, 2015 Rev: 41

Type Name Description

USHORT firstId First Glyph id in the range

USHORT lastId Last Glyph id in the range

USHORT colId Column index for this range

Table 15: Pass_Range

Pass Contents

A pass contains a Finite State Machine (FSM) which is used to match input strings to rules. It
also contains constraints for further testing whether a matched string should fire, and it contains
the action code to execute against the matched string.

The FSM consists of a set of states. A state consists of a row of transitions between that state and
another state dependent upon the next glyph in the input stream. Each state may be an acceptance
state, in which case it corresponds to a rule match, or a transition state, in which case the state is
on the way to matching a rule, or both. A null state transition is one in which the occurrence of
this particular class of the following glyph, will result in no extension of a rule match anywhere,
just fail on all further searching. A final state is one in which all its transitions are null transitions.

Note that the stateTrans array only needs to represent transitional states, not final states.
Similarly, the oRuleMap array only needs entries for acceptance states (whether final or
transitional). For this reason the FSM is set up (conceptually) in the following order: transitional
non-accepting states first, followed by transitional accepting states, followed by final (accepting)
states.

Note also that because there may be more than one matched rule for a given state, oRuleMap
indicates a list of rule indices in the ruleMap array; oRuleMap[i+1] – oRuleMap[i]
indicates how many there are for state i.

Normally the start state for an FSM is zero. But for each pass there is the idea of a “pre-context,”
that is, there are slots that need to be taken into consideration in the rule-matching process that are
before the current position of the input stream. If we are very near the beginning of the input, we
may need to adjust by skipping some states, which corresponds to skipping the “pre-context”
slots that not present due to being prior to the beginning of the input. This is what the
maxRulePreContext, minRulePreContext, and startStates items are used for.
Specifically, we need to skip the number of transitions equal to the difference between the
maxRulePreContext and the current stream position, if greater than zero. The startStates
array indicates what the adjusted start state should be. If the current input position is less than
minRulePreContext, no rule will match at all.

Rules are matched in order of length, so that longest rules are given precedence over shorter rules.
However, the length of some rules may have been adjusted to allow for a consistent “pre-context”
for all rules, so the number of matched states in the FSM may not correspond to the actual
number of matched items in the rule. For this reason, it is not adequate to simply order rules
based on the number of traversed states in the FSM. Rather, rules are given sort keys indicating
their precedence, which is based primarily on the length of the rule and secondarily on its original
position within the source code.

The FSM engine keeps track of all the acceptance states it passes through on its path to a final
state. This results in a list of rules matched by the string sorted by precedence. The engine takes
the first rule index off the list and looks up the offset to some constraint code. This code is
executed and if the constraint passes, then the action code associated with that offset is executed

Graphite Table Format Page 11 of 13
Martin Hosken and Sharon Correll July 15, 2015 Rev: 41

and the FSM restarts at the returned slot position. If the constraint fails, then the FSM considers
the next-preferred rule, tests that constraint, and so forth. If no accepting state is found or all rules
fail their constraints, then no rule applies, in which case a single glyph is put into the output
stream and the current position advances by one slot.

The action strings are simply byte strings of actions, much like hinting code, but using a
completely different language. (See “Stack Machine Commands.doc”.)

Sile

This table is used in Graphite table files that rely on an external font for rendering of the glyphs.
When this table is present, the Graphite file is in effect a minimal font that contains information
about the actual font to use in rendering. This information is stored in the Sile table.

This table was added as of version 2. It is not currently being used.

Type Name Description

FIXED version Table version: 00010000

ULONG checksum master checksum (checkSumAdjustment) from the head table of the base
font

ULONG createTime[2] Create time of the base font (64-bits) from the head table

ULONG modifyTime[2] Modify time of the base font (64-bits) from the head table

USHORT fontNameLength Number of characters in fontName

USHORT fontName[] Family name of base font

USHORT fontFileLength Number of characters in baseFile

USHORT baseFile[] Original path and name of base font file

Table 16: Sile

There are four possible situations with regard to the Sile table. The first two are considered
normal and the second two pathological.

1. No Sile table is present. In this case, it is assumed that the Graphite table file is a normal font
containing not only the Graphite tables but also the glyphs and metrics needed for rendering.

2. The base font named in the Sile table is present on the system, and its master checksum and
dates match those in the Sile table. In this case, the Graphite tables are read from the Graphite
table file, but the glyphs, metrics, and cmap from the base font are what are used for
rendering (with the modification performed by the Graphite tables).

3. The base font named in the Sile table is present, but its master checksum and/or dates do not
match those in the Sile table. In this case the base font is used to perform the rendering, but
with no Graphite behaviors.

4. The base font named in the Sile table is not present on the system. In this case the Graphite
table file is used for the rendering, with no Graphite behaviors, resulting in square boxes in
place of the expected glyphs.

Graphite Table Format Page 12 of 13
Martin Hosken and Sharon Correll July 15, 2015 Rev: 41

Sill

This table maps ISO-639-3 language codes onto feature values. Each language code can be a
maxmum of 4 ASCII characters (although 2 or 3 characters is what is used by the ISO standard).

This table was added as of version 3.

Type Name Description Version notes

FIXED version Table version: 00010000

USHORT numLangs Number of languages supported

USHORT searchRange (maximum power of 2 <= numLangs)

USHORT entrySelector log2(maximum power of 2 <= numLangs)

USHORT rangeShift numLangs - searchRange

LanguageEntry entries[] Languages and pointers to feature
settings; there are numLang + 1 of these

LangFeatureSetting settings[] Feature ID / value pairs

Table 17: Sill

Each language entry contains a 4-character language code and an offset to the list of features.
There is one bogus entry at the end that facilitates finding the size of the last entry. The offsets are
relative to the beginning of the Sill table.

The language code is left-aligned with any unused characters padded with NULLs. For instance,
the code “en” is represented by the four bytes [101, 110, 0, 0].

Type Name Description Version notes

BYTE langcode[4] 4-char ISO-639-3 language code

USHORT numSettings Number of feature settings for this language

USHORT offset Offset to first feature setting for this language

Table 18: LanguageEntry

Type Name Description Version notes

ULONG featureId Feature identifer number (matches ID in Feat table)

SHORT value Default feature value for this language

USHORT reserved Pad bytes

Table 19: LangFeatureSetting

Sild

This table holds the debug strings for debugging purposes. Since the strings are only used for
debugging, they are held somewhat optimised for space over speed and are not considered to be
multilingual. Thus strings are considered to be 7-bit ASCII, with a possible extension to UTF-8 at
a later stage. The table consists of a sequence of strings each preceded by a length byte. The first
string is id 0 and so on to the end of the table.

NOTE: this table has not been implemented.

Graphite Table Format Page 13 of 13
Martin Hosken and Sharon Correll July 15, 2015 Rev: 41

Multiple Descriptions
In the case where multiple descriptions are to be stored in the same set of tables, the following
unifications need to occur:

 The feature sets must be unified, thus limiting two features with the same name to having the
same settings and corresponding values.

 The glyph attributes must be unified. This can be done by using different attribute number
ranges, or by examining for identical attribute mappings or for non-intersecting attribute
mappings.

 The use of the name table must be unified to ensure that two features or feature settings do
not refer to the same entry in the name table.

Notice that the requirement that any tables declared in an external binary description override the
corresponding font table in the font, means that a name table in an external binary description
must be complete, including all the strings from the original font.

Changes

 18 March 2003: Changed unicode field of PseudoMap class to ULONG.
 22 July 2003: Added fields for critical features.
 Sometime: Added pass constraints.
 20 August 2003: Added Sile table; changed title to Graphite Table Format.
 January 2004: Added justification levels.
 10 February 2004: Added description of Feat table.
 31 January 2006: Added Sill table
 25 February 2011: Added version 2.0 of Glat table
 31 May 2012: Added version annotations

