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Chapter 1

Overview

This introduction is outdated: now the GenABEL-package is the project,
the suite, and the package, see http://www.genabel.org/developers

GenABEL-package is an R library developed to facilitate Genome-Wide Asso-
ciation (GWA) analysis of binary and quantitative traits. GenABEL-package is
implemented as an R library. R is a free, open source language and environment
for general-purpose statistical analysis (available at http://www.r-project.

org/). It implements powerful data management and analysis tools. Though it
is not strictly necessary to learn everything about R to run GenABEL-package,
it is highly recommended as this knowledge will improve flexibility and quality
of your analysis.

Originally GenABEL-package was developed to facilitate GWA analysis of
quantitative traits using data coming from extended families and/or collected
form genetically isolated populations. At the same time GenABEL-package im-
plements a large number of procedures used in analysis of population-based data;
it supports analysis of binary and quantitative tarits, and of survival (time-till-
event) data. Most up-to-date information about GenABEL-package can be found
at the web site http://www.genabel.org.

This tutorial was originally written to serve as a set of exercises for the
”Advances in population-based studies of complex genetic disorders” (GE03)
course of the Netherlands Institute of Health Sciences (Nihes).

If you read this tutorial not as a part of the GE03 course, and you are eager
to start with you GWA analysis without reading all the not-so-strictly-necessary
staff, start directly from the section 5 (”Genome-wide association analysis”).

Otherwise, you can start with R basics and simple association analyses using
few SNPs in section 2, ”Introduction to R”. In the next section, 4 (”Introduction
to the GenABEL-package”) you will learn how to work with the gwaa.data-

class, which is used to store GWA data in GenABEL-package and will perform
some simple large-scale analyses.

In the next section, 5 (”Genome-wide association analysis”), you will do qual-
ity control of genetic data and do association analysis under realistic conditions.
This section is the core of this tutorial.

The section 7 (”GWA in presence of genetic stratification: practice”) is ded-
icated to analysis in the presence of population stratification and analysis of
family-based data.

Genetic data imputations are covered in the section ??, ”??”.
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The last section, 11 (”Analysis of selected region”), is dedicated to analysis
of haplotype association and analysis of SNP interactions.

Information on importing the data from different file formats to GenABEL-

package is given in appendix A (”Importing data to GenABEL-package”). An-
swers to exercises are provided at the end of the respective chapters.

Experienced R users start directly with the section (4, ”Introduction to the
GenABEL-package”).
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1.1 Download necessary files

This code needs to be run prior to other parts of tutorial. We reccommend that
prior to any actions you create a new directory, say, ’exercisesGenABEL’, to
keep all of your working tutorial files there.

Start R and make sure that your working directory is set to a proper location.
Your current working directory can be queried by command ’getwd()’. Use
’setwd’ command to set the working directory.

The next lines of code kill the ’RData’ directory if it is present in your
working directory (danger! danger!) to make new clean data installation. Paste
this code into R:

unlink("RData",recursive=TRUE,force=TRUE)

dir.create("RData")

Now, fetch the necessary data from the server. First, define the download
procedure

myDownloads <- function(baseUrl,baseLocal,files) {

for (cFile in files) {

cFileUrl <- paste(baseUrl,cFile,sep="")

cFileLocal <- paste(baseLocal,cFile,sep="")

tryDownload <- try(

download.file(url=cFileUrl,destfile=cFileLocal)

)

if ( is(tryDownload,"try-error") )

stop(paste("can not download",cFileUrl,"into",cFileLocal,":",tryDownload))

}

}

Second, download data files:

baseUrl <- "http://www.genabel.org/sites/default/files/data/"

baseLocal <- "RData/"

dataFiles <- c(

"assocbase.RData",

"popdat.RData",

"mach1.out.mlinfo",

"mach1.mldose.fvi",

"mach1.mldose.fvd",

"rcT.PHE",

"gen0.illu",

"gen0.illuwos",

"gen0.tped",

"gen0.tfam",

"gen0.ped",

"map0.dat",

"emap0.dat",

"phe0.dat",

"ImputedDataAnalysis.RData")

myDownloads(baseUrl,baseLocal,dataFiles)

That’s it! - now you are fully set to start with the GenABEL tutorial!
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Chapter 2

Introduction to R

In this section we will consider the basic R data types and operations, as well
as tools for the analysis of qualitative and quantitative traits. Only basic R
functionality – the things which are crucial to know before we can proceed to
genetic association analysis – will be covered within this section. If you want
to make most of your data, though, we strongly recommend that you improve
your knowledge of R using books other than this one. A number of excellent
manuals (’An introduction to R’, ’Simple R’, ’Practical Regression and Anova
using R’, and others) is available free of charge from the R project web-site
(http://www.r-project.org).

In the first part of this chapter you will learn about the most important
R data types and will learn how to work with R data. Next, we will cover ex-
ploratory data analysis. The chapter will end with an introduction to regression
analysis.

2.1 Basic R data types and operations

In contrast with many other statistical analysis packages, analysis in R is not
based on a graphical user interface, but is command line-based. When you
first start R, a command prompt appears. To get help and overview of R,
type help.start() on the command line and press enter. This will start your
default internet browser and open the main page of the R documentation.

Let us first use R as a powerful calculator. You can directly operate with
numbers in R. Try multiplying two by three:

> 2*3

[1] 6

Other standard arithmetic operations can be performed in similar manner:

> 2/3

[1] 0.6666667

(division)

> 2^3

9
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[1] 8

(power)

> 2-3

[1] -1

(subtraction)

> 2+3

[1] 5

(summation)1.
Mathematical functions, such as square roots, base-10 logarithm, and expo-

nentiation, are available in R as well:

> sqrt(5)

[1] 2.236068

> log10(2.24)

[1] 0.350248

> exp(0.35)

[1] 1.419068

Here, we have computed e to the power of base-10 logarithm of the square
root of the sum of two and three. After each operation, we have rounded the
result to the two digits after the floating point – just to do less typing.

The arithmetic operations and functions can be nested and therefore we can
obtain the above result in one line, and without the 2nd-digit approximation:

> exp(log10(sqrt(2+3)))

[1] 1.418337

R functions include not only the standard mathematical ones, but also a
wide range of statistical function, for example, probability density functions of
many probability distributions. We will make extensive use of these at a later
stage, when computing significance and estimating statistical power.

For any function with a name say ’fun’, help may be obtained by typing
’help(fun)’ (or ?fun) on the command line.

R help pages have a standard layout, documenting usage of the function,
explaining function arguments, providing details of implementation and/or us-
age, explaining the value returned by the function, and giving references and
examples of the function use.

Most of the documented functions have examples of their usage at the
end of the ’help’ page, and these examples can be evaluated in R. E.g. try
’example(log10)’.

1For a complete list of arithmetic operations try help("+").
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Exercise 1. Explore help for Wilcoxon test

Explore the help page for the Wilcoxon test (function: wilcox.test) and
answer the following questions:

1. When is the exact Wilcoxon test computed by default?

2. If the default conditions for the exact test are not satisfied, what approx-
imation is used?

If you do not know the exact name for the function you look for, try ’help.search("query")’,
where query is the keyword.

Exercise 2. Finding functions and help pages

Try to find out what are the functions to do the

1. Fisher exact test

2. T-test

One of the important R operations is assignment, which is done with the
’<-’ operator. A (new) variable name should be provided on the left-hand side
of this operator and on the right-hand side, there must be either the name of
an already existing variable or an expression. For example, we if want to assign
the value ’2’ to the variable ’a’, and value ’3’ to the variable ’b’ we would use
the assignment operator in the following way:

> a <- 2

> b <- 3

Typing the variable name on the R command line will return its value, e.g.

> b

[1] 3

Evaluation of the expression

> exp(log10(sqrt(a+b)))

[1] 1.418337

gives the expected result we have obtained earlier using numerical arguments.
While the variables ’a’ and ’b’ contain single numeric values, variables in

general can be multi-dimensional; a one-dimensional example of such is the
vector (or array). Let us create an example vector and experiment with it:

> v <- c(1, 3, 5, 7, 11)

Here, ’c()’ is a function, which combines its arguments to make a vector. This
vector is then assigned to a variable named ’v’.

Now, let us try different operations with this vector:

> v + 1

[1] 2 4 6 8 12
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It is easy to see that the result is a vector, which is obtained by adding one to
each element of the original vector v. Other arithmetic operations and mathe-
matical functions behave in the same way, e.g. the operation is performed for
each element of the vector, and the results are returned:

> 1/v

[1] 1.00000000 0.33333333 0.20000000 0.14285714 0.09090909

> log(v)

[1] 0.000000 1.098612 1.609438 1.945910 2.397895

What happens if two vectors are supplied as function arguments? Let us
define a new vector

> ov <- c(1, 2, 3, 4, 5)

and add it to the vector v:

> v + ov

[1] 2 5 8 11 16

You can see that the summation was done element-wise, i.e. the first element
of the result vector is obtained as the sum of the first elements of v and ov, the
second is the sum of the second elements, and so forth.

Other arithmetic operations with two vectors are performed in the same
element-wise manner:

> v * ov

[1] 1 6 15 28 55

(multiplication)

> v^ov

[1] 1 9 125 2401 161051

(power).
The vector operations considered above returned a same-length vector as

output. There are others – statistical and summary – functions which evaluate
a vector as a whole and return a single value as output. For example, to obtain
a sum of elements of a vector, use

> sum(v)

[1] 27

Other examples of such functions are length, returning the number of ele-
ments of a vector, mean, returning the mean, var, returning the variance, etc.:

> length(v)

[1] 5
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> mean(v)

[1] 5.4

> var(v)

[1] 14.8

One of the basic, and probably most used, data operations in R is sub-setting.
This refers to an operation which helps you deriving a subset of the data. Let

us create a short vector and play a bit with sub-setting. This vector will contain
5 simple character strings:

> a <- c("I am element 1", "I am element 2", "I am element 3",

+ "I am element 4", "I am element 5")

> a

[1] "I am element 1" "I am element 2" "I am element 3" "I am element 4"

[5] "I am element 5"

To find out what is the value of the i-th element of this vector, you can
sub-set it by a[i]. For example the 3rd elements is:

> a[3]

[1] "I am element 3"

You can also select a bigger sub-set, e.g. all elements from 2 to 4:

> a[c(2:4)]

[1] "I am element 2" "I am element 3" "I am element 4"

Here, the operation c(2:4) stands for ’combine numbers from 2 to 4 into a
vector’. An equivalent result is obtained by

> a[c(2, 3, 4)]

[1] "I am element 2" "I am element 3" "I am element 4"

We can also easily get disjoint elements; e.g. if you want to retrieve elements
1, 3, and 5, you can do that with

> dje <- c(1, 3, 5)

> dje

[1] 1 3 5

> a[dje]

[1] "I am element 1" "I am element 3" "I am element 5"

One of the very attractive features of R data objects is the possibility to
derive a sub-set based on some condition. Let us consider two vectors, tmphgt,
containing the height of some subjects, and tmpids, containing their identifica-
tion codes (IDs):
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> tmphgt <- c(150, 175, 182, 173, 192, 168)

> tmphgt

[1] 150 175 182 173 192 168

> tmpids <- c("fem1", "fem2", "man1", "fem3", "man2", "man3")

> tmpids

[1] "fem1" "fem2" "man1" "fem3" "man2" "man3"

Imagine you need to derive the IDs of the people with height over 170 cm.
To do that, we need to combine several operations. First, we should run the
logical function > 170 on the height data:

> vec <- (tmphgt > 170)

> vec

[1] FALSE TRUE TRUE TRUE TRUE FALSE

This returns a logical vector whose elements are ’TRUE’, when a particular
element of the tmphgt satisfies the condition > 170. The returned logical vector,
in turn, can be applied to sub-set any other vector of the same length2, including
itself. Thus if you want to see the heights in people that are taller than 170 cm,
you can use

> tmphgt[vec]

[1] 175 182 173 192

As you can see, only the elements of tmphgt for which the corresponding value
of vec was ’TRUE’, are returned. In the same manner, the logical vector vec can
be applied to select elements of the vector of IDs:

> tmpids[vec]

[1] "fem2" "man1" "fem3" "man2"

You can combine more than one logical condition to derive sub-sets. For
example, to see what are the IDs of people taller than 170 but shorter than 190
cm, you can use

> vec <- (tmphgt>170 & tmphgt<190)

> vec

[1] FALSE TRUE TRUE TRUE FALSE FALSE

> tmpids[vec]

[1] "fem2" "man1" "fem3"

2 Actually, you can apply it to a longer vector too, and then the logical vector will be
”expanded” to the total length by repeating the original vector head-to-tail. However, we will
not use this in our exercises.
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A better3 way to do logical sub-setting is to use the which() function on top
of the logical vector. This function reports which elements are TRUE. To obtain
the aforementioned result you can run:

> vec <- which(tmphgt>170 & tmphgt<190)

> vec

[1] 2 3 4

> tmpids[vec]

[1] "fem2" "man1" "fem3"

You can see that now vec contains a vector whose elements are the indices of
the elements of tmphgt for which the logical condition holds.

Sub-setting for 2D objects (matrices) is done in a similar manner. Let us
construct a simple matrix and do several sub-setting operations on it:

> a <- matrix(c(11, 12, 13,

+ 21, 22, 23,

+ 31, 32, 33

+ ),

+ nrow=3, ncol=3)

> a

[,1] [,2] [,3]

[1,] 11 21 31

[2,] 12 22 32

[3,] 13 23 33

To obtain the element in the 2nd row and 2nd column, you can use

> a[2, 2]

[1] 22

To access the element from the second row and third column, use

> a[2, 3]

[1] 32

Note that here, the row index (2) comes first, and the column index (3) comes
second.

To obtain the 2 × 2 set of elements contained in upper left corner, you can
do

> a[1:2, 1:2]

[,1] [,2]

[1,] 11 21

[2,] 12 22

3Because it treats NAs for you
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1 2 3
1 1 4 7
2 2 5 8
3 3 6 9

Table 2.1: Vector representation of a matrix. Elements in the table are the
vector indices of the matrix elements.

Or you can even get the variables that reside in corners:

> a[c(1, 3), c(1, 3)]

[,1] [,2]

[1,] 11 31

[2,] 13 33

If one of the dimensions is not specified, a complete vector is returned for
this dimension. For example, here we retrieve the first row

> a[1,]

[1] 11 21 31

. . . and the third column

> a[, 3]

[1] 31 32 33

. . . or columns 1 and 3:

> a[, c(1, 3)]

[,1] [,2]

[1,] 11 31

[2,] 12 32

[3,] 13 33

Another way to address elements of a matrix is to use a one-dimensional
index. For example, if you want to access the element in the 2nd row and 2nd
column, instead of

> a[2, 2]

[1] 22

you can use

> a[5]

[1] 22
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This way of accessing the elements of a matrix is based on the fact that
each matrix can be represented as a vector whose elements are numbered con-
secutively: the element in the upper-left corner has index 1, the element in
the second row of the first column has index 2, and the last element in the
bottom-right corner has the maximal value, as shown in Table 2.1.

You can sub-set matrices using logical conditions or indexes like you can
with vectors. For example, if we want to see which elements of a are greater
than 21, we can run

> a > 21

[,1] [,2] [,3]

[1,] FALSE FALSE TRUE

[2,] FALSE TRUE TRUE

[3,] FALSE TRUE TRUE

or, better

> which(a > 21)

[1] 5 6 7 8 9

Note that in the latter case, a vector whose elements give the 1-D indicess of the
matrix, is returned. This vector indicates the elements of matrix a, for which
the condition (a > 21) is satisfied.

You can obtain the values of the matrix’s elements for which the condition
is fulfilled either by

> a[a > 21]

[1] 22 23 31 32 33

or using

> a[which(a > 21)]

[1] 22 23 31 32 33

Once again, the latter method should be preferred. Consider the example
where some elements of the matrix are missing (NA) – a situation which is
common in real data analysis. Let us replace element number 5 with NA and
perform sub-setting operations on the resulting matrix:

> a

[,1] [,2] [,3]

[1,] 11 21 31

[2,] 12 22 32

[3,] 13 23 33

> a[5] <- NA

> a
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[,1] [,2] [,3]

[1,] 11 21 31

[2,] 12 NA 32

[3,] 13 23 33

> a[a > 21]

[1] NA 23 31 32 33

> a[which(a > 21)]

[1] 23 31 32 33

You can see that when a[a > 21] was used, not only the elements which are
greater than 21 were returned, but also NA was. As a rule, this is not what you
want, and which should be used unless you do want to make some use of the NA

elements.
In this section, we have generated a number of R data objects. Some of these

were numeric (e.g. vector of heights, tmphgt) and some were character, or string
(e.g. vector of study IDs, tmpids). Sometimes you need to figure out what the
class of a certain object is. This can be done using the class() function. For
example,

> tmphgt

[1] 150 175 182 173 192 168

> class(tmphgt)

[1] "numeric"

> tmpids

[1] "fem1" "fem2" "man1" "fem3" "man2" "man3"

> class(tmpids)

[1] "character"

What happens if we try to find out the class of

> a

[,1] [,2] [,3]

[1,] 11 21 31

[2,] 12 NA 32

[3,] 13 23 33

– an object, which contains a matrix?

> class(a)

[1] "matrix"
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Results are expected – we find out that a is a matrix, which is correct. At
the same time, a matrix is an upper-level class, which contains a number of
elements, belonging to some lower-level (e.g. character/numeric) class. To see
what is the class of the matrix elements, try

> a[1, ]

[1] 11 21 31

> class(a[1, ])

[1] "numeric"

which says that elements (at least of the first row) are numeric. Because all
elements of a matrix should have the same class, we can conclude that a is a
matrix containing numeric values.

At this point, it is worthwile inspecting what data objects were created
during our work. This can be done with the ls() command:

> ls()

[1] "a" "b" "dje" "old" "ov" "tmphgt" "tmpids" "v"

[9] "vec"

Obviously, this ”list” command is very useful – you will soon find that it is
just too easy to forget the name of a variable which took a long time to create.
Sometimes you may wish to remove some of the data objects because you do
not need then anymore. You can remove an object using the rm() command,
where the names of objects to be deleted are listed as arguments. For example,
to remove the tmphgt and tmpids variables you can use

> rm(tmphgt, tmpids)

If you now look up what data objects are still left in you workspace with the
ls() command

> ls()

[1] "a" "b" "dje" "old" "ov" "v" "vec"

you find that you have successfully deleted tmphgt and tmpids.
At this point, you can exit R by typing q() on the command line and pressing

Enter.

Summary:

• You can get access to the top-level R documentation via the help.start()
command. To search help for some keyword keywrd, you can use the
help.search(keywrd) command. To get a description of some function
fun, use help(fun).

• You can use R as a powerful calculator



20 CHAPTER 2. INTRODUCTION TO R

• It is possible to get sub-sets of vectors and matrices by specifying an index
value or a logical condition (of the same length as the vector / matrix)
between square brackets ([, ])

• When you obtain an element of a matrix with [i, j], i is the row and j

is the column of the matrix.

• The function which(A) returns the index of the elements of A which are
TRUE

• You can see the objects available in your workspace by using the ls()

command

• Unnecessary objects (say, tmphgt) can be deleted from the workspace
using the rm command, e.g. rm(tmphgt)

• You can leave R using the q() command

Exercise 3. Exploring srdta

In this exercise, you will explore a few vectors representing different data on
study subjects described in hte srdta example data set supplied together with
GenABEL-package. First, you need to load GenABEL-package by typing

> library(GenABEL)

and load the data by

> data(srdta)

The vector containing the study subjects’ sex can be accessed through male(srdta);
this vector’s value is 1 when the corresponding person is male and 0 otherwise.
The vector containing SNP names can be accessed via snpnames(srdta), chro-
mosome ID – through chromosome(srdta) and map – through map(srdta).
Explore these vectors and answer the questions.

1. What is the ID and sex of the first person in the data set?

2. Of the 22nd person?

3. How many males are observed among the first hundred subjects?

4. How many FEMALES are among the 4th hundred?

5. What is the male proportion in the first 1000 people?

6. What is the FEMALE proportion in second 1000 (1001:2000) people?

7. What is name, chromosome and map position of 33rd marker?

8. What is distance between markers 25 and 26?

2.2 Data frames

A data frame is a class of R data which, basically, is a data table. In such
tables, it is usually assumed that rows correspond to subjects (observations) and
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columns correspond to variables (characteristics) measured on these subjects.
A nice feature of data frames is that columns (variables) have names, and the
data can be addressed by referencing to these names4.

We will explore R data frames using the example data set assoc. Start R
with a double-click on the file named assocbase.RData. You can see the names
of the loaded objects by using the ”list” command:

> ls()

[1] "assoc"

Thus, only one object is loaded. The class of this object is:

> class(assoc)

[1] "data.frame"

– a data frame.
The dimensionality of a data frame (or a matrix) can be determined by using

the dim() command:

> dim(assoc)

[1] 250 7

Here, the first number corresponds to the number of rows (subjects) and the
second to the number of columns (variables). Thus, the data frame assoc

contains the data on 250 subjects, who are characterised by 7 variables each.
Let us now figure out what the names are of the 7 variables present in the

data frame. To see what the variable names are, use the command names():

> names(assoc)

[1] "subj" "sex" "aff" "qt" "snp4" "snp5" "snp6"

These variables correspond to the personal identifier (ID, variable subj),
sex, affection status, quantitative trait qt and several SNPs. Each variable can
have its own type (numeric, character, logical), but all variables must have the
same length – thus forming a matrix-like data structure.

A variable from a data frame (say, fram), which has some name (say, nam)
can be accessed through fram$nam. This will return a conventional vector,
containing the values of the variable. For example, to see the affection status
(aff) in the data frame assoc, use

> assoc$aff

[1] 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0

[38] 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0

[75] 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0

[112] 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1

[149] 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1

[186] 1 1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0

[223] 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0

4This may also be true for matrices; however, a more fundamental difference is that a
matrix always contains variables of the same data type, e.g. character or numeric, whereas a
data frame may contain variables of different types
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The aff (affected) variable here codes for a case/control status. Conventi-
nally, cases are coded as 1 and controls as 0. You can also see several ”NA”s,
which denotes a missing observation.

Exercise 4. Exploring assoc

1. Investigate the types of the variables present in data frame assoc. For
each variable, write down the class.

A data frame may be thought of as a matrix which is a collection of (potentily
different-type) vectors. All sub-setting operations discussed before for matrices
are applicable to a data frame, while all operations dicussed for vectors are
applicable to a data frame’s variables.

Thus, as any particular variable present in a data frame is a conventional
vector, its elements can be accessed using the vector’s indices. For example, if
you would like to know what are the ID, sex and affection status for the person
with index 75, you can request

> assoc$subj[75]

[1] 75

> assoc$sex[75]

[1] 1

> assoc$aff[75]

[1] 0

Alternatively, using the matrix-style of sub-setting, you can see all the data
for person 75:

> assoc[75,]

subj sex aff qt snp4 snp5 snp6

75 75 1 0 1.014664 A/B B/A B/B

In the same manner as with matrices, you can get data for e.g. subjects 5
to 15 by

> assoc[5:15,]

subj sex aff qt snp4 snp5 snp6

5 5 0 0 0.1009220 A/B B/A B/A

6 6 1 0 -0.1724321 A/B A/A A/A

7 7 0 0 -0.3378473 B/B A/A A/A

8 8 0 0 -1.7112925 A/A B/B <NA>

9 9 1 0 -0.4815822 A/B B/A B/A

10 10 1 0 1.2281232 A/A B/B B/B

11 11 0 0 0.5993945 A/B B/A B/A

12 12 0 0 1.9792190 A/A B/B B/B

13 13 1 0 1.5435921 A/A B/B B/B

14 14 0 0 -1.6242738 A/B B/A B/A

15 15 0 0 -0.5160331 A/A B/B B/B



2.2. DATA FRAMES 23

The result is actually a new data frame containing data only on people with
index ranging from 5 to 15:

> x <- assoc[5:15,]

> class(x)

[1] "data.frame"

> dim(x)

[1] 11 7

As well as with matrices and vectors, it is possible to sub-set elements of a
data frame based on (a combination of) logical conditions. For example, if you
are interested in people who have qt values over 1.4, you can find out what the
indices of these people are:

> vec <- which(assoc$qt>1.4)

> vec

[1] 12 13 33 41 54 68 72 76 89 106 118 142 156 161 175 181 193 219 241

and then show the complete data with

> assoc$subj[vec]

[1] 12 13 33 41 54 68 72 76 89 106 118 142 156 161 175 181 193 219 241

At the same time, if you only want to check what the IDs of these people are,
try

> assoc$subj[vec]

[1] 12 13 33 41 54 68 72 76 89 106 118 142 156 161 175 181 193 219 241

Or, if we are interested to find what the IDs and the SNP genotypes are of
these people, we can try

> assoc[vec, c(1, 5, 6, 7)]

subj snp4 snp5 snp6

12 12 A/A B/B B/B

13 13 A/A B/B B/B

33 33 A/A B/B B/B

41 41 A/A B/A B/A

54 54 A/B B/A B/A

68 68 A/A B/B B/B

72 72 A/A B/A B/A

76 76 A/B B/A B/A

89 89 A/A B/B B/B

106 106 A/B B/A B/A

118 118 A/B B/A B/A

142 142 A/B B/A B/A

156 156 A/A B/B B/B
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161 161 A/B B/A B/A

175 175 A/B B/A B/A

181 181 A/B B/A B/A

193 193 A/A B/B B/B

219 219 A/B B/A B/A

241 241 B/B A/A A/A

here, we select people identified by vec in the first dimension (subjects), and by
c(1, 5, 6, 7) we select the first, fifth, sixth and seventh column (variable).

The same result can be obtained using variable names instead of the vari-
ables’ indices. To remind you the variable names can be found with:

> names(assoc)

[1] "subj" "sex" "aff" "qt" "snp4" "snp5" "snp6"

And now make a vector of the variable names of interest and filter the data
based on it:

> namstoshow <- c("subj", "snp4", "snp5", "snp6")

> assoc[vec, namstoshow]

subj snp4 snp5 snp6

12 12 A/A B/B B/B

13 13 A/A B/B B/B

33 33 A/A B/B B/B

41 41 A/A B/A B/A

54 54 A/B B/A B/A

68 68 A/A B/B B/B

72 72 A/A B/A B/A

76 76 A/B B/A B/A

89 89 A/A B/B B/B

106 106 A/B B/A B/A

118 118 A/B B/A B/A

142 142 A/B B/A B/A

156 156 A/A B/B B/B

161 161 A/B B/A B/A

175 175 A/B B/A B/A

181 181 A/B B/A B/A

193 193 A/A B/B B/B

219 219 A/B B/A B/A

241 241 B/B A/A A/A

A more convenient way to access data presented in a data frame is through
”attaching” it to the R search path by

> attach(assoc)

After that, the variables can be accessed directly, e.g.

> subj[75]

[1] 75
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instead of assoc$subj[75].
While it is possible to explore the data presented in a data frame using

the sub-setting operations and screen output, and modify certain data elements
using the assignment (”<-”) operation, you can also explore and modify the data
contained in a data frame5 by using the fix() command (e.g. try fix(assoc)).
However, normally this is not necessary.

With attached data frames, a possible complication is that later on you may
have several data frames which contain variables with the same names. The
variable which will be used when you directly use the name would be the one
from the data frame attached last. You can use the detach() function to remove
a certain data frame from the search path, e.g. after

> detach(assoc)

we cannot use a direct reference to the name (try subj[75]) anymore, but have
to use the full path instead:

> assoc$subj[75]

[1] 75

Summary:

• The list of available objects can be viewed with ls(); the class of some
object obj can be examined with class(obj).

• Simple summary statistics for numeric variables can be generated by using
the summary function

• A histogram for some variable var can be generated by hist(var).

• A variable with name name from a data frame frame, can be accessed
through frame$name.

• You can attach a data frame to the search path by attach(frame). Then
the variables contained in this data frame may be accessed directly. To
detach the data frame (because, e.g., you are now interested in another
data frame), use detach(frame).

Exercise 5. Explore the phenotypic part of srdta

Load the srdta data object supplied with GenABEL by loading the package
with library(GenABEL) and then loading the data with data(srdta). The
srdta object contains a data frame with phenotypes. This data frame may
be accessed through phdata(srdta). Explore this data frame and answer the
questions

1. What is the value of the 4th variable for subject number 75?

5and also a matrix
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2. What is the value of variable 1 for person 75? Check the value of this
variable for the first ten people. Can you guess what the first variable
is?

3. What is the sum of variable 2? Can you guess what data variable 2
contains?

2.3 Exploratory analysis of qualitative and quan-
titative traits

Let us now attach the data frame asscoc

> attach(assoc)

and explore it.
Let us first check how many of the subjects are males. In the sex variable,

males are coded with ”1”and females with ”0”. Therefore to see the total number
of males, you can use

> sum(sex==1)

[1] 129

and to determine what is the proportion of males you can use

> sum(sex==1)/length(sex)

[1] 0.516

This way to compute the proportion would only work correctly if there are no
missing observations (lenght() returns the total length of a variable, including
NAs).

Because of the way the males are coded, the same answer is reached by

> mean(sex)

[1] 0.516

However, that would not have worked if the sex was coded differently, e.g.
with ”1” for males and ”2” for females.

Let us now try to find out the mean of the quantitative trait qt. By def-
inition, the mean of a variable, say x (with the i-th element denoted as xi)
is

x̄ =
ΣNi=1xi
N

where N is the number of measurements.
If we try to find out the mean of qt by direct use of this formula, we first need

to find out the sum of the elements of qt. The sum() function of R precisely
does the operation we need. However, if we try it

> sum(qt)

[1] -29.79333



2.3. EXPLORATORYANALYSIS OF QUALITATIVE ANDQUANTITATIVE TRAITS27

this returns ”NA”. The problem is that the qt variable contains ”NA”s (try qt

to see these) and then, by default, ”NA” is returned. We can, however, instruct
the sum() function to remove ”NA”s from consideration:

> sum(qt, na.rm=TRUE)

[1] -29.79333

where na.rm=TRUE tells R that missing variables should be be removed (Non-
Available.ReMove=True)6.

We can now try to compute the mean with

> sum(qt, na.rm=TRUE)/length(qt)

[1] -0.1191733

This result, however, is not correct. The length() function returns the total
length of a vector, which includes ”NA”s as well. Thus we need to compute the
number of elements in qt that are not missing.

For this, we can use R function is.na(). This function returns TRUE if
the supplied argument is missing (NA) and FALSE otherwise. Let us apply this
function to the vector assoc$qt:

> is.na(qt)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Indeed, the 0 missing elements are correctly identified. However, we are
interested in elements which are not missing. To get these, we can use the
logical function NOT (!), which changes all FALSE to TRUE and visa versa:

6The same argument works for a number of R statistical functions such as mean, median,
var, etc.
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> !is.na(qt)

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[31] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[46] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[76] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[91] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[106] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[121] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[136] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[151] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[166] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[181] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[196] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[211] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[226] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[241] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Thus the number of elements which are not missing7 is

> sum(!is.na(qt))

[1] 250

Finally, we can compute the mean of the qt with

> sum(qt, na.rm=TRUE)/sum(!is.na(qt))

[1] -0.1191733

While this way of computing the mean is enlightening in the sense of how
missing values are treated, the same correct result should be normally achieved
by supplying the na.rm=TRUE argument to the mean() function:

> mean(qt, na.rm=TRUE)

[1] -0.1191733

The function table(x) produces a frequency table for the variable x. Thus,
we can use

> table(sex)

sex

0 1

121 129

7A hidden trick here is that arithmetic operations treat TRUE as one and FALSE as zero.
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which, again, tells us that there are 129 males and 121 females in this data set.
This function excludes missing observations.

Tables of other qualitative variables, such as affection status and SNPs, can
be generated in the same manner.

As with arithmetic operations and mathematical functions, most of the R
operations can be combined within a single line. Let us try to combine logical
conditions and the table() command to check the distribution of number of
affected in men and women separately:

> table(aff[which(sex==1)])

0 1

98 31

> table(aff[which(sex==0)])

0 1

96 25

On the R command line pressing the “up-arrow” button makes the last

typed command re-appear (pressing it one more time will bring you to the

one before the last, so on). This is very handy when you have to repeat the

same analysis of different variables

Exercise 6. Explore assoc

Explore the phenotypic variables present in assoc

1. How many affected and unaffected are present in the data set?

2. What is the proportion of affected?

3. What is the distribution of snp4 (how many different genotype classes
are present and what are the counts)?

Contingency tables for pairs of variables (cross-tables) can be generated in R
using the table command we have used in previous section to explore frequency
distributions. For example, if you want cross-tabulate sex and affection status
in the data frame assoc, you can use

> table(sex, aff)

aff

sex 0 1

0 96 25

1 98 31

Here, the first variable (sex) is presented in rows and the second (affection
status) in columns.

As is usually the case with R, the output may be saved as a new object (of
class ’table’, which is a variety of a matrix):
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> a <- table(sex, aff)

> class(a)

[1] "table"

> a

aff

sex 0 1

0 96 25

1 98 31

and this object may be analysed further.
For example, we can easily get the number of affected male with

> a[2, 2]

[1] 31

Alternatively, we can analyse the resulting contingency table a with more
complex functions. If we want to see proportions in this table, we can use

> prop.table(a)

aff

sex 0 1

0 0.384 0.100

1 0.392 0.124

Needless to say, this is equivalent to

> prop.table(table(assoc$sex, assoc$aff))

0 1

0 0.384 0.100

1 0.392 0.124

In the above table, we see what proportion of people belong to four different
classes (affected male, affected female, unaffected male and unaffected female).
We may also be interested in the proportion of males in affected and unaffected.
This may be achieved by

> prop.table(a, 2)

aff

sex 0 1

0 0.4948454 0.4464286

1 0.5051546 0.5535714

telling us that 55.4% of affected individuals are male.
Alternatively, we may be interested in the proportion of affected among

males/females. To answer this question, run

> prop.table(a, 1)
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aff

sex 0 1

0 0.7933884 0.2066116

1 0.7596899 0.2403101

telling us that 55.4% of male are affected.
Another useful contingency table analysis function is fisher.test, which

implements the Fisher Exact Test of independence:

> fisher.test(a)

Fisher's Exact Test for Count Data

data: a

p-value = 0.547

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.6409648 2.3156591

sample estimates:

odds ratio

1.213747

Exploration of genetic data within base R, though possible, may be a bit of a
pain. For example, we can easily generate contingency table of SNP5 vs. affected
status:

> a <- table(aff, snp5)

> a

snp5

aff A/A B/A B/B

0 31 88 71

1 9 26 17

We can also look up the proportion of affected among different genotypic groups

> prop.table(a, 2)

snp5

aff A/A B/A B/B

0 0.7750000 0.7719298 0.8068182

1 0.2250000 0.2280702 0.1931818

showing that proportion of cases is similar in the ’A/A’ and ’A/B’ genotypic
groups and somewhat decreased in ’B/B’. It is easy to test if this affection is
statistically independent of genotype by doing a χ2 test

> chisq.test(a)

Pearson's Chi-squared test

data: a

X-squared = 0.3874, df = 2, p-value = 0.8239
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which gives a (insignificant) genotypic association test with two degrees of free-
dom.

However, testing Hardy-Weinberg equilibrium, testing allelic effects, and
even computation of allelic frequency is not so straightforward. Such spe-
cific genetic tests are implemented in special R libraries, such as genetics and
GenABEL-package and will be covered in later sections of this document.

At this moment we will switch to exploratory analysis of quantitative traits.
We will make use of the srdta data supplied with the GenABEL-package. As you
can remember from an earlier exercise, that library is loaded with library(GenABEL)

and the data are loaded with data(srdta). Then the phenotypic data frame
may be accessed through phdata(srdta).

Exercise 7. Explore phenotypes in srdta

Explore the phenotypic data content of srdta object (phdata(srdta)).

1. How many observations and variables are present in the data frame?

2. What are the classes of these variables?
As was mentioned before, the function summary() generates a summary

statistics for an object. For example, to see the summary for trait qt1, we can
use

> summary( phdata(srdta)$qt1 )

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
-4.6000 -0.9500 -0.3100 -0.2981 0.3800 3.2000 3

summary is quite a useful function which may operate in different ways for

objects of different classes. Try summary(phdata(srdta)).

With R, it is also easy to explore the data graphically. For example, a
histogram for qt1 may be generated by

> hist( phdata(srdta)$qt1 )

The resulting histogram is shown in Figure 2.1.
In a similar manner scatter-plots may be generated. To see the relation

between qt1 and qt3, you can run

> plot( phdata(srdta)$qt1, phdata(srdta)$qt3 )

The resulting plot is shown in Figure 2.2.
The mean, median, minimum and maximum of the distribution of a trait

may be found using the functions mean, median, min and max, respectively. The
variance and standard deviation can be computed with var and sd.

To compute the correlation between two variables (or all variables in a ma-
trix/data frame), use cor.

In GenABEL-package, there is a special function designed to facilitate phe-
notypic quality control. This function takes the names of variables and a data
frame as an input, and returns summary statistics, list of outliers (using False
Discovery Rate) and graphs.

For example, to do QC of sex, age and qt3, try
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Figure 2.1: Histogram of qt1.
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Figure 2.2: Scatter-plot of qt1 against qt3.
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Figure 2.3: Quality control graphs for sex, age, qt3

> check.trait( c("sex", "age", "qt3"), phdata(srdta) )

--------------------------------

Trait sex has 2500 measurements

Missing: 0 ( 0 %)

Mean = 0.51 ; s.d. = 0.5

NO outliers discovered for trait sex

--------------------------------

Trait age has 2500 measurements

Missing: 0 ( 0 %)

Mean = 50.0378 ; s.d. = 7.060125

NO outliers discovered for trait age

--------------------------------

Trait qt3 has 2489 measurements

Missing: 11 ( 0.44 %)

Mean = 2.60859 ; s.d. = 1.101154

NO outliers discovered for trait qt3

The corresponding graph is shown in figure 2.3.

Before you start with the exercise: if a function returns unexpected results,

and you are confident that syntax was right, checking the help page is always
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a good idea!

Exercise 8. Exploring the phenotypic part of srdta

Explore the phdata part of the srdta object

1. How many people have age over 65 years?

2. What is the sex distribution (proportion of males) in the people over 65
years old?

3. What are the mean, median, minimum and maximum ages in the sample?

4. Compare the distribution of qt3 in people younger and older than 65
years. Use the function sd(A) to get standard deviation of A.

5. Produce distributions of different traits. Do you see something special?

6. What is the correlation between qt3 and age?

2.4 Regression analysis

While contingency tables, bi-plots and correlation are powerful tools to analyse
relations between pairs of variables, a more general framework allowing investi-
gation of the relation of an outcome to multiple predictors is regression. In R,
the function lm implements linear regression modelling, and the function glm

implements generalised linear regression. In this section, we will use these two
functions to analyse quantitative and binary outcomes.

You can do linear regression to check if trait qt2 has a relation with sex and
age by

> a <- lm(phdata(srdta)$qt2 ~ phdata(srdta)$age + phdata(srdta)$sex)

The results of this analysis are stored in object ’a’, which has class ’lm’ and
contains many sub-objects:

> class(a)

[1] "lm"

> names(a)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

At this moment you do not need to understand all these sub-objects; the mean-
ingful summary of analysis is produced with

> summary(a)
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Call:

lm(formula = phdata(srdta)$qt2 ~ phdata(srdta)$age + phdata(srdta)$sex)

Residuals:

Min 1Q Median 3Q Max

-5.65 -1.80 -1.03 -0.31 883.08

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.55892 4.41667 -0.353 0.724

phdata(srdta)$age 0.14022 0.08668 1.618 0.106

phdata(srdta)$sex 1.30377 1.22393 1.065 0.287

Residual standard error: 30.59 on 2497 degrees of freedom

Multiple R-squared: 0.001518, Adjusted R-squared: 0.0007181

F-statistic: 1.898 on 2 and 2497 DF, p-value: 0.1501

You can see that qt2 is not associated with age or sex.
As before, to make easy access to your data (basically, to avoid typing

phdata(srdta) before every trait name, you may attach the data to the search
path:

> attach(phdata(srdta))

Then, the above expression to run linear regression analysis simplifies to:

> summary( lm(qt2 ~ age + sex) )

Call:

lm(formula = qt2 ~ age + sex)

Residuals:

Min 1Q Median 3Q Max

-5.65 -1.80 -1.03 -0.31 883.08

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.55892 4.41667 -0.353 0.724

age 0.14022 0.08668 1.618 0.106

sex 1.30377 1.22393 1.065 0.287

Residual standard error: 30.59 on 2497 degrees of freedom

Multiple R-squared: 0.001518, Adjusted R-squared: 0.0007181

F-statistic: 1.898 on 2 and 2497 DF, p-value: 0.1501

with the same results.
Analysis of binary outcomes may be performed using glm function, using

binomial family for the error distribution and the link function. For example,
to figure out if your binary trait (bt) is associated with sex and age, you need
to tell that this is binary trait:

> a <- glm(bt ~ age + sex, family="binomial")

> summary(a)
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Call:

glm(formula = bt ~ age + sex, family = "binomial")

Deviance Residuals:

Min 1Q Median 3Q Max

-1.992 -1.091 -0.444 1.094 1.917

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.639958 0.330519 -14.038 < 2e-16 ***

age 0.088860 0.006463 13.749 < 2e-16 ***

sex 0.379593 0.084138 4.512 6.44e-06 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3450.5 on 2488 degrees of freedom

Residual deviance: 3216.5 on 2486 degrees of freedom

(11 observations deleted due to missingness)

AIC: 3222.5

Number of Fisher Scoring iterations: 4

There is strong association between bt and sex and age. If you want to charac-
terise the strength of association to a binary trait with Odds Ratios, take the
exponents of the regression coefficient. For example, the odds ratio associated
with male is

> exp(0.3796)

[1] 1.4617

2.5 Answers to exercises

Answer of Exercise 1. Explore help for Wilcoxon test

By default (if ’exact’ is not specified), an exact p-value is computed if the samples
contain less than 50 finite values and there are no ties. Otherwise, a normal
approximation is used.

Answer of Exercise 2. Finding functions and help pages

Try help.search("Fisher") and help.search("Student t-test"). You will
find that the corresponding functions are fisher.test t.test.

Answer of Exercise 3. Exploring srdta

For the first person the id is ”p1” and the sex code is 1 (1=male, 0=female)

> idnames(srdta)[1]
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[1] "p1"

> male(srdta)[1]

p1

1

The id for the 22nd person is ”p22” and sex code is 1:

> idnames(srdta)[22]

[1] "p22"

> male(srdta)[22]

p22

1

Among the first 100 subjects, there are 53 males:

> sum(male(srdta)[1:100])

[1] 53

Among the 4th hundred subjects there are 45 females:

> 100 - sum(male(srdta)[301:400])

[1] 45

The male proportion among the first 1000 people is

> mean(male(srdta)[1:1000])

[1] 0.508

The female proportion among the second 1000 people is

> 1 - mean(male(srdta)[1001:2000])

[1] 0.476

Name, chromosome and map position of the 33rd marker are:

> snpnames(srdta)[33]

[1] "rs422"

> chromosome(srdta)[33]

rs422

"1"

> map(srdta)[33]

rs422

105500
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The map positions for and distance between markers 25 and 26 are:

> pos25 <- map(srdta)[25]

> pos25

rs365

91250

> pos26 <- map(srdta)[26]

> pos26

rs372

92750

> pos26 - pos25

rs372

1500

Answer of Exercise 4. Exploring assoc

Here is an script which automatically explores the classes of variables in assoc:

> for (i in names(assoc)) {

+ cat("Variable '", i ,"' has class '", class(assoc[, i]), "'\n", sep="")

+ }

Variable 'subj' has class 'integer'
Variable 'sex' has class 'numeric'
Variable 'aff' has class 'numeric'
Variable 'qt' has class 'numeric'
Variable 'snp4' has class 'genotypefactor'
Variable 'snp5' has class 'genotypefactor'
Variable 'snp6' has class 'genotypefactor'

In this so-called for-loop the variable i cycles through all names in assoc and
for each of them it uses the cat function to print the name of the variable and
its class. The \n is the code for a new line.

Answer of Exercise 5. Explore the phenotypic part of srdta

Load the data and look at the few first rows of the phenotypic data frame:

> data(srdta)

> phdata(srdta)[1:5, ]

id sex age qt1 qt2 qt3 bt

p1 p1 1 43.4 -0.58 4.46 1.43 0

p2 p2 1 48.2 0.80 6.32 3.90 1

p3 p3 0 37.9 -0.52 3.26 5.05 1

p4 p4 1 53.8 -1.55 888.00 3.76 1

p5 p5 1 47.5 0.25 5.70 2.89 1

The value of the 4th variable of person 75:
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> phdata(srdta)[75, 4]

[1] -0.04

The value for variable 1 is

> phdata(srdta)[75, 1]

[1] "p75"

Also, if we check the first 10 elements we see

> phdata(srdta)[1:10, 1]

[1] "p1" "p2" "p3" "p4" "p5" "p6" "p7" "p8" "p9" "p10"

This is the individual ID.
The sum for variable 2 is

> sum(phdata(srdta)[, 2])

[1] 1275

This is the sex variable – so there are 1275 males in the data set.

Answer of Exercise 6. Explore assoc

The number of affected (coded with ’1’) and unaffected (’0’) is

> table(aff)

aff

0 1

194 56

The proportion of unaffected and affected is

> prop.table(table(aff))

aff

0 1

0.776 0.224

Distribution of the ’snp4’ is

> t <- table(snp4)

> t

snp4

A/A A/B B/B

109 105 29

> prop.table(t)

snp4

A/A A/B B/B

0.4485597 0.4320988 0.1193416
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Answer of Exercise 7. Explore phenotypes in srdta

Number of people:

> nids(srdta)

[1] 2500

Number of variables:

> length( names( phdata(srdta) ) )

[1] 7

The same – dimensions of phenotypic data frame:

> dim(phdata(srdta))

[1] 2500 7

The class of variables in phenotypic data frame:

> for (i in names(phdata(srdta))) {

+ cat("The class of variable '", i ,"' is '",
+ class(phdata(srdta)[, i]), "'\n", sep="")

+ }

The class of variable 'id' is 'character'
The class of variable 'sex' is 'integer'
The class of variable 'age' is 'numeric'
The class of variable 'qt1' is 'numeric'
The class of variable 'qt2' is 'numeric'
The class of variable 'qt3' is 'numeric'
The class of variable 'bt' is 'integer'

Answer of Exercise 8. Exploring the phenotypic part of srdta

To obtain the number of people with age > 65 y.o., you can use any of the
following

> sum( phdata(srdta)$age > 65 )

[1] 48

> vec <- which( phdata(srdta)$age > 65 )

> length(vec)

[1] 48

To get sex of these people use any of:

> sx65 <- phdata(srdta)$sex[ phdata(srdta)$age > 65 ]

> sx65

[1] 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0

[39] 1 0 1 0 0 0 0 1 1 1
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> sx65 <- phdata(srdta)$sex[vec]

> sx65

[1] 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0

[39] 1 0 1 0 0 0 0 1 1 1

Thus, number of males is:

> sum(sx65)

[1] 26

To conclude, the proportion of males is 0.541666666666667.
The distributions of qt3 in people younger and older than 65 are:

> summary(phdata(srdta)$qt3[vec])

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.730 2.690 3.480 3.499 4.265 5.840

> sd( phdata(srdta)$qt3[vec], na.rm=TRUE )

[1] 1.128701

> young <- which(phdata(srdta)$age<65)

> summary( phdata(srdta)$qt3[young] )

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
-1.97 1.83 2.58 2.59 3.35 6.34 11

> sd( phdata(srdta)$qt3[young], na.rm=TRUE )

[1] 1.093374

The Mean, median, min and max of age:

> summary( phdata(srdta)$age )

Min. 1st Qu. Median Mean 3rd Qu. Max.

24.10 45.10 50.00 50.04 54.80 71.60

The histogram for qt2 looks strange (you can generate it using hist(phdata(srdta)$qt2)):
it seems there are a few very strong outliers. You can also see that with summary:

> summary( phdata(srdta)$qt2 )

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 4.220 5.045 6.122 5.910 888.000
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Chapter 3

Introduction to genetic
association analysis in R

When analyzing several (dozens of) SNPs, facilities of base R are sufficient
and efficient for data storage and analysis. Few specific test, such as these
of Hardy-Weinberg Equilibrium (HWE) and Linkage Disequilibrium (LD), are
implemented in different libraries, e.g. genetics and GenABEL-package.

In this section, we will describe library genetics and will make use of it to
guide you through simple genetic analysis exercise using a small example data
set. In the last part, you will investigate a bigger data set as based on the
knowledge obtained in the first part, and will answer the questions.

3.1 Characterisation of genetic data

3.2 Exploring genetic data with library genetics

Library genetics was written by Gregory R. Warnes to facilitate analysis of
genetic data in R. This library

• Implements genetic analysis tests, such as test for Hardy-Weinberg equi-
librium and Linkage disequilibrium.

• Implements new data classes, such as genotype, haplotype and LD.data.frame.

• Modifies default R functions, such as summary and plot to correctly anal-
yse and present these new classes.

• Facilitates export of the data from R to the formats supported by such
genetic analysis packages as GenePop and QTDT.

Start R by double-click on the file ge03d1p1.RData. THIS FILE IS THE
SAME AS THE assocbase.RData, so I load and patch it below Load
library genetics, which we will need for testing HWE and computations of LD
by

> library(genetics)

45
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NOTE: THIS PACKAGE IS NOW OBSOLETE.

The R-Genetics project has developed an set of enhanced genetics

packages to replace 'genetics'. Please visit the project homepage

at http://rgenetics.org for informtion.

The file you have loaded contains single data frame assocg. Let us load

> #load("RData/ge03d1p1.RData")

> # load assocbase data and convert snps into proper 'genetics' format

> load("RData/assocbase.RData")

> assocg <- assoc

> assocg$snp4 <- as.genotype(assocg$snp4)

> assocg$snp5 <- as.genotype(assocg$snp5)

> assocg$snp6 <- as.genotype(assocg$snp6)

and briefly explore it:

> class(assocg)

[1] "data.frame"

> names(assocg)

[1] "subj" "sex" "aff" "qt" "snp4" "snp5" "snp6"

> dim(assocg)

[1] 250 7

You can see that assocg looks remarkably similar to the previously explored
data frame assoc (section 2.2, page 20). Indeed, they are almost equivalent.
Let us present the data for the subjects 5 to 15 and compare this output to that
presented on page 23:

> assocg[5:15,]

subj sex aff qt snp4 snp5 snp6

5 5 0 0 0.1009220 A/B B/A B/A

6 6 1 0 -0.1724321 A/B A/A A/A

7 7 0 0 -0.3378473 B/B A/A A/A

8 8 0 0 -1.7112925 A/A B/B <NA>

9 9 1 0 -0.4815822 A/B B/A B/A

10 10 1 0 1.2281232 A/A B/B B/B

11 11 0 0 0.5993945 A/B B/A B/A

12 12 0 0 1.9792190 A/A B/B B/B

13 13 1 0 1.5435921 A/A B/B B/B

14 14 0 0 -1.6242738 A/B B/A B/A

15 15 0 0 -0.5160331 A/A B/B B/B

The data are identical. However, the SNP data presented in the new data frame
have special class genotype, as implemented in genetics library:

> class(assocg$snp4)
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[1] "genotype" "factor"

Previously, the SNP genotypes were coded as characters. This new way of
presentation allows library genetics to recognise the SNP data as genetic and
analyse them accordingly.

Let us attach the assocg data frame and explore what data analysis advan-
tages are achieved by application of library genetics.

> attach(assocg)

As we noted in section 2.2, testing Hardy-Weinberg equilibrium, testing al-
lelic effects, and even computation of allelic frequency is not so straightforward
in base R. These tests, are, however, easy with library genetics. To see the
allelic frequencies and other summary statistics for a SNP, you can use

> summary(snp4)

Number of samples typed: 243 (97.2%)

Allele Frequency: (2 alleles)

Count Proportion

A 323 0.66

B 163 0.34

NA 14 NA

Genotype Frequency:

Count Proportion

B/B 29 0.12

A/B 105 0.43

A/A 109 0.45

NA 7 NA

Heterozygosity (Hu) = 0.4467269

Poly. Inf. Content = 0.3464355

To check these characteristics in controls and cases separately, you can use

> summary(snp4[aff==0])

Number of samples typed: 190 (97.9%)

Allele Frequency: (2 alleles)

Count Proportion

A 255 0.67

B 125 0.33

NA 8 NA

Genotype Frequency:

Count Proportion

B/B 22 0.12
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A/B 81 0.43

A/A 87 0.46

NA 4 NA

Heterozygosity (Hu) = 0.4426469

Poly. Inf. Content = 0.3440288

> summary(snp4[aff==1])

Number of samples typed: 53 (94.6%)

Allele Frequency: (2 alleles)

Count Proportion

A 68 0.64

B 38 0.36

NA 6 NA

Genotype Frequency:

Count Proportion

B/B 7 0.13

A/B 24 0.45

A/A 22 0.42

NA 3 NA

Heterozygosity (Hu) = 0.4643306

Poly. Inf. Content = 0.3541731

Let us check if HWE holds for the SNPs described in this data frame. We
can do exact test for HWE by

> HWE.exact(snp4)

Exact Test for Hardy-Weinberg Equilibrium

data: snp4

N11 = 109, N12 = 105, N22 = 29, N1 = 323, N2 = 163, p-value = 0.666

If you want to check HWE using controls only, you can do it by

> HWE.exact(snp4[aff==0])

Exact Test for Hardy-Weinberg Equilibrium

data: snp4[aff == 0]

N11 = 87, N12 = 81, N22 = 22, N1 = 255, N2 = 125, p-value = 0.6244

Let us check if the there is LD between snp4 and snp5:

> LD(snp4,snp5)
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Pairwise LD

-----------

D D' Corr

Estimates: 0.2009042 0.9997352 0.8683117

X^2 P-value N

LD Test: 354.3636 0 235

The output shows results of the test for significance of LD, and estimates of the
magnitude of LD (D′ and correlation, r). To obtain r2, you can either square
the correlation manually

> 0.8683117*0.8683117

[1] 0.7539652

or simply ask LD() to report it by

> LD(snp4,snp5)$"R^2"

[1] 0.7539652

The latter command is possible because the LD() function actually computes
more things than it reports. This is quite common for R functions. You can
apply names() function to the analysis objects to see (at least part of) what
was actually computed. Try

> ld45 <- LD(snp4,snp5)

and check what are the sub-objects contained in this analysis object

> names(ld45)

[1] "call" "D" "D'" "r" "R^2" "n" "X^2"

[8] "P-value"

Any of these variables can be accessed through object$var syntax, e.g. to
check D′ we can use

> ld45$"D'"

[1] 0.9997352

To check LD for more that two SNPs, we can compute an LD analysis object
by

> ldall <- LD(data.frame(snp4,snp5,snp6))

and later check

> ldall$"P-value"

snp4 snp5 snp6

snp4 NA 0 0

snp5 NA NA 0

snp6 NA NA NA
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to see significance,

> ldall$"D'"

snp4 snp5 snp6

snp4 NA 0.9997352 0.8039577

snp5 NA NA 0.9997231

snp6 NA NA NA

for D′ and

> ldall$"R^2"

snp4 snp5 snp6

snp4 NA 0.7539652 0.5886602

snp5 NA NA 0.8278328

snp6 NA NA NA

for r2.
You can also present e.g. r2 matrix as a plot by

> image(ldall$"R^2")

A more neat way to present it requires specification of the set of threshold
(break points) and colors to be used (you do not need to try this example if you
do not want):

> image(ldall$"R^2",breaks=c(0.5,0.6,0.7,0.8,0.9,1),col=heat.colors(5))

Resulting plot is shown at figure 3.1.

For any R command, you can get help by typing help(command). Try

help(image) if you are interested to understand what are ”breaks” and ”col”;

or try help(heat.colors) to figure this color schema out.

Similar to our HWE checks, we may want to compute (and compare) LD in
cases and controls separately:

> ldcases <- LD(data.frame(snp4,snp5,snp6)[aff==1,])

> ldcases$"R^2"

snp4 snp5 snp6

snp4 NA 0.7615923 0.6891558

snp5 NA NA 0.8943495

snp6 NA NA NA

> ldcontr <- LD(data.frame(snp4,snp5,snp6)[aff==0,])

> ldcontr$"R^2"

snp4 snp5 snp6

snp4 NA 0.7512458 0.5616395

snp5 NA NA 0.8075894

snp6 NA NA NA
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Figure 3.1: r2 plot for snp4, snp5 and snp6

and even present it results for cases and controls on the same graph (you do not
need to produce this graph, which is presented at the figure 3.2):

> image(ldcases$"R^2",breaks=c(0.5,0.6,0.7,0.8,0.9,1),col=heat.colors(5))

> image(t(ldcontr$"R^2"),breaks=c(0.5,0.6,0.7,0.8,0.9,1),col=heat.colors(5),add=T)

3.3 Genetic association analysis

3.4 Example association analysis

Now, after we have described genetic and phenotypic data separately, we are
ready to test association between these two. In previous sections, we showed
that association between a binary trait and genotype may be analysed using
contingency tables (functions table, prop.table, fisher.test, etc.). The
association between a quantitative trait and genotype may be done using cor-
relations, T-test, etc.

However, a more flexible analysis is possible when using regression modelling.
First, we will investigate relation between the quantitative trait qt and the SNPs
by using linear regression

> mg <- lm(qt~snp4)

The lm command fits linear regression model to the data and returns an analysis
object. The summary of analysis may be generated with
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Figure 3.2: r2 plot for snp4, snp5 and snp6. Above diagonal: LD in cases;
below: controls

> summary(mg)

Call:

lm(formula = qt ~ snp4)

Residuals:

Min 1Q Median 3Q Max

-2.63700 -0.62291 -0.01225 0.58922 3.05561

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.081114 0.092517 -0.877 0.382

snp4A/B -0.108366 0.132079 -0.820 0.413

snp4B/B -0.006041 0.201820 -0.030 0.976

Residual standard error: 0.9659 on 240 degrees of freedom

(7 observations deleted due to missingness)

Multiple R-squared: 0.003049, Adjusted R-squared: -0.005259

F-statistic: 0.367 on 2 and 240 DF, p-value: 0.6932

From the summary output, it is clear that the model assumes arbitrary (esti-
mated) effects of the genotypes AA, AB and BB. Neither effect of AB nor BB
is significant in this case. The global test on two degrees of freedom (bottom of
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the output) is also not significant.
If you want to include some covariate into your model, e.g. sex, you can

easily do that by adding the term to the formula:

> summary(lm(qt~sex+snp4))

Call:

lm(formula = qt ~ sex + snp4)

Residuals:

Min 1Q Median 3Q Max

-2.66442 -0.62417 -0.00875 0.59705 3.08086

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.110298 0.115260 -0.957 0.340

sex 0.053018 0.124493 0.426 0.671

snp4A/B -0.104429 0.132628 -0.787 0.432

snp4B/B -0.002452 0.202340 -0.012 0.990

Residual standard error: 0.9676 on 239 degrees of freedom

(7 observations deleted due to missingness)

Multiple R-squared: 0.003805, Adjusted R-squared: -0.0087

F-statistic: 0.3043 on 3 and 239 DF, p-value: 0.8223

You can also allow for interaction by using the ”*” operator

> summary(lm(qt~sex*snp4))

Call:

lm(formula = qt ~ sex * snp4)

Residuals:

Min 1Q Median 3Q Max

-2.57049 -0.64596 -0.00264 0.61094 3.01970

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.20579 0.13834 -1.487 0.138

sex 0.22649 0.18647 1.215 0.226

snp4A/B 0.05222 0.19024 0.274 0.784

snp4B/B 0.18071 0.28576 0.632 0.528

sex:snp4A/B -0.30191 0.26566 -1.136 0.257

sex:snp4B/B -0.35508 0.40531 -0.876 0.382

Residual standard error: 0.9684 on 237 degrees of freedom

(7 observations deleted due to missingness)

Multiple R-squared: 0.01041, Adjusted R-squared: -0.01047

F-statistic: 0.4984 on 5 and 237 DF, p-value: 0.7773

Note that both main effects of sex and snp4, and also effects of interaction are
estimated in this model.
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Of interest in genetic studies may be three other models: additive, dominant
and recessive.

The additive model assumes that the difference between mean trait’s values
between ’AA’ and ’BB’ is twice the difference between ’AA’ and ’BB’, that is
the mean value of the trait for heterozygous genotypes is right in between the
two homozygotes. To test additive model, we first need to recode the predictor
(genotype) as a numeric factor to be used as covariate. This can be easy done
with function as.numeric:

> add4 <- as.numeric(snp4)-1

We can check if recoding was done correctly by producing the table

> table(snp4,add4)

add4

snp4 0 1 2

A/A 109 0 0

A/B 0 105 0

B/B 0 0 29

Now to test the additive model run

> summary(lm(qt~add4))

Call:

lm(formula = qt ~ add4)

Residuals:

Min 1Q Median 3Q Max

-2.54813 -0.62104 -0.02754 0.60584 3.00652

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.10476 0.08710 -1.203 0.230

add4 -0.03563 0.09133 -0.390 0.697

Residual standard error: 0.9651 on 241 degrees of freedom

(7 observations deleted due to missingness)

Multiple R-squared: 0.0006313, Adjusted R-squared: -0.003516

F-statistic: 0.1522 on 1 and 241 DF, p-value: 0.6968

The model assuming dominant action of the ’A’ allele means that the means
of genotypes ’AA’ and ’AB’ are the same. This is equivalent to the model of
recessive action of ’B’ allele. To code SNP4 according to this model, we can use
function replace:

> dom4 <- add4

> dom4[dom4==2] <- 1

> table(snp4,dom4)

dom4

snp4 0 1
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A/A 109 0

A/B 0 105

B/B 0 29

To test association with a binary outcome, we will use function glm with
binomial family:

> summary(glm(aff~snp4,family="binomial"))

Call:

glm(formula = aff ~ snp4, family = "binomial")

Deviance Residuals:

Min 1Q Median 3Q Max

-0.7433 -0.7204 -0.6715 -0.6715 1.7890

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.3749 0.2386 -5.761 8.35e-09 ***

snp4A/B 0.1585 0.3331 0.476 0.634

snp4B/B 0.2297 0.4952 0.464 0.643

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 254.91 on 242 degrees of freedom

Residual deviance: 254.58 on 240 degrees of freedom

(7 observations deleted due to missingness)

AIC: 260.58

Number of Fisher Scoring iterations: 4

To make a test of global significance of the SNP effect, you can use

> anova(glm(aff~snp4,family="binomial"),test="Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 242 254.91

snp4 2 0.32894 240 254.58 0.8483

In the manner similar to that described for quantitative traits, additive and
dominance/recessive models can be tested by proper coding of the genotypic
variable, e.g. to test the additive model, use
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> summary(glm(aff~as.numeric(snp4),family="binomial"))

Call:

glm(formula = aff ~ as.numeric(snp4), family = "binomial")

Deviance Residuals:

Min 1Q Median 3Q Max

-0.7549 -0.7139 -0.6747 -0.6747 1.7842

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.4913 0.4164 -3.581 0.000342 ***

as.numeric(snp4) 0.1272 0.2268 0.561 0.574994

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 254.91 on 242 degrees of freedom

Residual deviance: 254.60 on 241 degrees of freedom

(7 observations deleted due to missingness)

AIC: 258.6

Number of Fisher Scoring iterations: 4

Now you have learned all commands necessary to answer the questions of
the next section.

Exit R by typing q() command (do not save image) and and proceed to the
self exercise.

3.5 Exercise: Exploring genetic data using li-
brary genetics

Start R by double-click over the file ge03d1p2.RData (Windows) or by changing
to the directory containing the data, starting R and loading the data set with
load("ge03d1p2.RData") (Linux). Explore the data frame present and answer
the questions.

Ex. 1 — How many SNPs are described in this data frame?

Ex. 2 — What is the frequency (proportion) of snp1 allele ’A’?

Ex. 3 — What is its frequency of ’A’ in affected (aff==1)?

Ex. 4 — How many cases and controls are present in the data set?

Ex. 5 — If all subjects are used to test HWE, are there any SNPs out of HWE
at nominal P ≤ 0.05? Which ones?

Ex. 6 — If only controls are used to test the SNPs which are out of HWE in
total sample, are these still out of HWE?
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Ex. 7 — Which SNP pairs are in strong LD (r2 ≥ 0.8)?

Ex. 8 — For SNPs in strong LD, what is r2 for separate samples of cases and
controls?

Ex. 9 — Is there significant association between affection status and sex?
What is P -value for association?

Ex. 10 — Is association between the disease and qt significant?

Ex. 11 — Which SNPs are significantly associated with affection status at
nominal p-value ≤ 0.05? Use general genotypic (2 d.f.) model.

Ex. 12 — Test association between aff and snp5 and snp10, allowing for the
SNPs interaction effect. Use arbitrary (not an additive) model. Do you observe
significant interaction? How can you describe the model of concert action of
snp5 and snp10?

Ex. 13 — Test for association between the quantitative trait qt and SNPs
1-10 using additive model. Which SNPs are associated at nominal P ≤ 0.05?

Ex. 14 — OPTIONAL, difficulty is medium, but may be time-consuming.
If you adjust the analysis under additive model for sex, how do the findings
change? Before doing the exercise, please check the answer to previous exer-
cise – it shows a quick way to do testing for all 10 SNPs.

Ex. 15 — Which SNPs are associated with the quantitative trait qt at nom-
inal P ≤ 0.05 when general genotypic (2 d.f. test) model is used?

Ex. 16 — ADVANCED: How can you describe the model of action of the
significant SNPs? Test if the data are compatible with additive/dominant/recessive
model.

3.6 Answers to exercises

Answer (Ex. 1) — The answer is 10 snps:

> attach(popdat)

> names(popdat)

[1] "subj" "sex" "aff" "qt" "snp1" "snp2" "snp3" "snp4" "snp5"

[10] "snp6" "snp7" "snp8" "snp9" "snp10"

Answer (Ex. 2) — The frequency of ’A’ in all subjects is 0.73:

> summary(snp1)

Number of samples typed: 2374 (95%)

Allele Frequency: (2 alleles)

Count Proportion

A 3462 0.73
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B 1286 0.27

NA 252 NA

Genotype Frequency:

Count Proportion

B/B 199 0.08

A/B 888 0.37

A/A 1287 0.54

NA 126 NA

Heterozygosity (Hu) = 0.3950646

Poly. Inf. Content = 0.3169762

Answer (Ex. 3) — The frequency of A in affected subjects is 0.7:

> summary(snp1[aff==1])

Number of samples typed: 519 (94.5%)

Allele Frequency: (2 alleles)

Count Proportion

A 729 0.7

B 309 0.3

NA 60 NA

Genotype Frequency:

Count Proportion

B/B 48 0.09

A/B 213 0.41

A/A 258 0.50

NA 30 NA

Heterozygosity (Hu) = 0.4185428

Poly. Inf. Content = 0.3307192

Answer (Ex. 4) — There are 549 cases and 1951 controls:

> table(aff)

aff

0 1

1951 549

Answer (Ex. 5) — Only SNP 1 is out of HWE in the total sample. Here is a
sciript testing all SNPs (no need to reproduce that, just check the results):

> for (i in 1:10) {

+ snpname <- paste("snp",i,sep="")
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+ cat("HWE P-value for SNP",snpname,"is",HWE.exact(get(snpname))$p.value,"\n")

+ }

HWE P-value for SNP snp1 is 0.01083499

HWE P-value for SNP snp2 is 1

HWE P-value for SNP snp3 is 0.4197772

HWE P-value for SNP snp4 is 0.8960298

HWE P-value for SNP snp5 is 0.2960967

HWE P-value for SNP snp6 is 0.5207056

HWE P-value for SNP snp7 is 0.6284575

HWE P-value for SNP snp8 is 0.1309458

HWE P-value for SNP snp9 is 0.4457363

HWE P-value for SNP snp10 is 0.7897327

Answer (Ex. 6) — Yes, SNP one is out of HWE also in controls:

> HWE.exact(snp1[aff==0])

Exact Test for Hardy-Weinberg Equilibrium

data: snp1[aff == 0]

N11 = 1029, N12 = 675, N22 = 151, N1 = 2733, N2 = 977, p-value =

0.008393

Answer (Ex. 7) — SNP pairs 4-5 and 5-6 have r2 ≥ 0.8:

> LD(popdat[,5:14])$"R^2"

snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10

snp1 NA 0.016 0.235 0.206 0.258 0.227 0.152 0.117 0.090 0.000

snp2 NA NA 0.004 0.004 0.005 0.004 0.000 0.000 0.000 0.000

snp3 NA NA NA 0.602 0.457 0.346 0.641 0.031 0.042 0.001

snp4 NA NA NA NA 0.803 0.650 0.729 0.027 0.037 0.002

snp5 NA NA NA NA NA 0.874 0.586 0.034 0.046 0.002

snp6 NA NA NA NA NA NA 0.670 0.030 0.040 0.002

snp7 NA NA NA NA NA NA NA 0.020 0.027 0.003

snp8 NA NA NA NA NA NA NA NA 0.002 0.000

snp9 NA NA NA NA NA NA NA NA NA 0.001

snp10 NA NA NA NA NA NA NA NA NA NA

Answer (Ex. 8) — For controls,

> #LD(popdat[aff==0,8:10])$"R^2"

> LD(data.frame(snp4,snp5,snp6)[aff==0,])$"R^2"

snp4 snp5 snp6

snp4 NA 0.806591 0.6419715

snp5 NA NA 0.8661005

snp6 NA NA NA

For cases,
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> #LD(popdat[aff==1,8:10])$"R^2"

> LD(data.frame(snp4,snp5,snp6)[aff==1,])$"R^2"

snp4 snp5 snp6

snp4 NA 0.7951475 0.6773275

snp5 NA NA 0.9083237

snp6 NA NA NA

Note that the fact that LD is higher in cases may mean nothing because the
estimates of LD are biased upwards with smaller sample sizes. For example in a
small sample (5 people) of controls we expect even higher LD because of strong
upward bias:

> LD(popdat[which(aff==0)[1:5],8:10])$"R^2"

snp4 snp5 snp6

snp4 NA 0.9995876 0.9995876

snp5 NA NA 0.9995876

snp6 NA NA NA

More elaborate methods, such as that by Zaykin et al. (2006), are required to
contrast LD between sample of unequal size.

Answer (Ex. 9) — There is no significant association:

> t <- table(aff,sex)

> t

sex

aff 0 1

0 973 978

1 260 289

> fisher.test(t)

Fisher's Exact Test for Count Data

data: t

p-value = 0.3104

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.9107753 1.3430565

sample estimates:

odds ratio

1.105811

> summary(glm(aff~sex,family=binomial()))

Call:

glm(formula = aff ~ sex, family = binomial())

Deviance Residuals:

Min 1Q Median 3Q Max

-0.7196 -0.7196 -0.6882 -0.6882 1.7644

Coefficients:
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Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.31970 0.06981 -18.90 <2e-16 ***

sex 0.10062 0.09673 1.04 0.298

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2632.0 on 2499 degrees of freedom

Residual deviance: 2630.9 on 2498 degrees of freedom

AIC: 2634.9

Number of Fisher Scoring iterations: 4

Answer (Ex. 10) — There is no significant association:

> summary(glm(aff~qt,family=binomial()))

Call:

glm(formula = aff ~ qt, family = binomial())

Deviance Residuals:

Min 1Q Median 3Q Max

-0.7326 -0.7079 -0.7012 -0.6905 1.7675

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.26769 0.04832 -26.238 <2e-16 ***

qt -0.02514 0.04862 -0.517 0.605

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2632.0 on 2499 degrees of freedom

Residual deviance: 2631.7 on 2498 degrees of freedom

AIC: 2635.7

Number of Fisher Scoring iterations: 4

Answer (Ex. 11) — SNPs 5 and 10 are significantly associated:

> for (i in 1:10) {

+ snpname <- paste("snp",i,sep="")

+ cat("\nTesting association between aff and SNP",snpname,":\n")

+ print(anova(glm(aff~get(snpname),family=binomial),test="Chisq"))

+ #print(summary(lm(qt~get(snpname)))$coef)

+ }

Testing association between aff and SNP snp1 :
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Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 2373 2493.4

get(snpname) 2 5.4094 2371 2488.0 0.06689 .

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Testing association between aff and SNP snp2 :

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 2373 2485.8

get(snpname) 1 0.29367 2372 2485.5 0.5879

Testing association between aff and SNP snp3 :

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 2377 2503.0

get(snpname) 2 2.6087 2375 2500.4 0.2714

Testing association between aff and SNP snp4 :

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff
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Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 2389 2519.1

get(snpname) 2 5.2755 2387 2513.8 0.07152 .

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Testing association between aff and SNP snp5 :

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 2382 2440.4

get(snpname) 2 9.2395 2380 2431.2 0.009855 **

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Testing association between aff and SNP snp6 :

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 2379 2498.9

get(snpname) 2 1.7969 2377 2497.1 0.4072

Testing association between aff and SNP snp7 :

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
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NULL 2367 2487.9

get(snpname) 2 1.3604 2365 2486.6 0.5065

Testing association between aff and SNP snp8 :

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 2370 2489.4

get(snpname) 2 5.5375 2368 2483.9 0.06274 .

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Testing association between aff and SNP snp9 :

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 2360 2476.8

get(snpname) 2 1.1891 2358 2475.6 0.5518

Testing association between aff and SNP snp10 :

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 2383 2475.1

get(snpname) 2 6.7328 2381 2468.4 0.03451 *

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1
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Answer (Ex. 12) — It appears that SNP10 genotype is only relevant in these
who are homozygous for the low-risk A allele at the SNP5; in such cases SNP 10
allele B is risk increasing. In these homozygous for SNP 5 A, we observe highly
significant increase in risk for heterozygotes for SNP10 and increased (though
not significantly) risk for SNP 10 BB:

> summary(glm(aff~snp5*snp10,family=binomial()))

Call:

glm(formula = aff ~ snp5 * snp10, family = binomial())

Deviance Residuals:

Min 1Q Median 3Q Max

-0.9906 -0.7340 -0.6323 -0.5215 2.0310

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.50840 0.08905 -16.938 < 2e-16 ***

snp5A/A -0.41802 0.19722 -2.120 0.0340 *

snp5B/B 0.33441 0.13360 2.503 0.0123 *

snp10A/B -0.01403 0.18251 -0.077 0.9387

snp10B/B -0.14983 0.55277 -0.271 0.7863

snp5A/A:snp10A/B 1.48369 0.32750 4.530 5.89e-06 ***

snp5B/B:snp10A/B 0.12989 0.27441 0.473 0.6360

snp5A/A:snp10B/B 0.82348 0.98963 0.832 0.4053

snp5B/B:snp10B/B -0.28562 1.23104 -0.232 0.8165

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2282.4 on 2268 degrees of freedom

Residual deviance: 2242.9 on 2260 degrees of freedom

(231 observations deleted due to missingness)

AIC: 2260.9

Number of Fisher Scoring iterations: 4

Answer (Ex. 13) — SNPs 1, 4, 5, 6 and 9 are significantly associated at
nominal P ≤ 0.05. Here is a testing script (no need to reproduce that, just
check the results):

> for (i in 1:10) {

+ snpname <- paste("snp",i,sep="")

+ cat("\nTesting association between qt and SNP",snpname,":\n")

+ testmodel <- lm(qt~as.numeric(get(snpname)))

+ print(summary(testmodel)$coef)

+ }

Testing association between qt and SNP snp1 :

Estimate Std. Error t value Pr(>|t|)
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(Intercept) -0.11874800 0.05260279 -2.257447 0.024070746

as.numeric(get(snpname)) 0.08859657 0.03147693 2.814651 0.004923315

Testing association between qt and SNP snp2 :

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.09149145 0.1841115 0.4969352 0.6192808

as.numeric(get(snpname)) -0.07749967 0.1806078 -0.4291047 0.6678860

Testing association between qt and SNP snp3 :

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.06382773 0.05629376 1.1338331 0.2569789

as.numeric(get(snpname)) -0.02517149 0.02894125 -0.8697443 0.3845280

Testing association between qt and SNP snp4 :

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.14005988 0.05612775 2.495377 0.01264938

as.numeric(get(snpname)) -0.07284539 0.02982557 -2.442380 0.01466282

Testing association between qt and SNP snp5 :

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.14350846 0.06620992 -2.167477 0.03029734

as.numeric(get(snpname)) 0.07404874 0.02941437 2.517434 0.01188645

Testing association between qt and SNP snp6 :

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.12737489 0.06768096 -1.881990 0.05995937

as.numeric(get(snpname)) 0.06724115 0.02924840 2.298969 0.02159304

Testing association between qt and SNP snp7 :

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.08884244 0.05475991 1.622399 0.1048511

as.numeric(get(snpname)) -0.03774136 0.03152701 -1.197112 0.2313829

Testing association between qt and SNP snp8 :

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.05214665 0.08116533 -0.6424744 0.5206274

as.numeric(get(snpname)) 0.06942327 0.07222881 0.9611576 0.3365710

Testing association between qt and SNP snp9 :

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.2201742 0.07115711 -3.094199 0.0019965937

as.numeric(get(snpname)) 0.2110978 0.06112112 3.453761 0.0005625794

Testing association between qt and SNP snp10 :

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.01474695 0.05749473 -0.2564921 0.7975930

as.numeric(get(snpname)) 0.03140888 0.04251458 0.7387789 0.4601141
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Answer (Ex. 14) — Generally, results do not change much: still, SNPs 1, 4,
5, 6 and 9 are significantly associated, and p-values are close to these observed
without adjustment For SNPs

> for (i in 1:10) {

+ snpname <- paste("snp",i,sep="")

+ cat("\nTesting sex-adjusted association between qt and SNP",snpname,":\n")

+ testmodel <- lm(qt~sex+as.numeric(get(snpname)))

+ print(summary(testmodel)$coef)

+ }

Testing sex-adjusted association between qt and SNP snp1 :

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.12783200 0.05660623 -2.2582672 0.024019551

sex 0.01766209 0.04061074 0.4349117 0.663666095

as.numeric(get(snpname)) 0.08868826 0.03148302 2.8170191 0.004887301

Testing sex-adjusted association between qt and SNP snp2 :

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.08169692 0.18525892 0.4409878 0.6592621

sex 0.01977118 0.04101612 0.4820343 0.6298261

as.numeric(get(snpname)) -0.07770464 0.18063757 -0.4301688 0.6671120

Testing sex-adjusted association between qt and SNP snp3 :

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.05518829 0.06028776 0.9154146 0.3600669

sex 0.01626276 0.04057000 0.4008568 0.6885616

as.numeric(get(snpname)) -0.02491788 0.02895328 -0.8606239 0.3895321

Testing sex-adjusted association between qt and SNP snp4 :

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.12611774 0.06040009 2.0880388 0.03690009

sex 0.02553529 0.04083273 0.6253633 0.53179244

as.numeric(get(snpname)) -0.07227905 0.02984312 -2.4219671 0.01551079

Testing sex-adjusted association between qt and SNP snp5 :

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.15272175 0.06880690 -2.2195704 0.02654187

sex 0.02009534 0.04076087 0.4930057 0.62205408

as.numeric(get(snpname)) 0.07357452 0.02943476 2.4995791 0.01250094

Testing sex-adjusted association between qt and SNP snp6 :

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.14110680 0.07002874 -2.0149841 0.04401871

sex 0.03117861 0.04077551 0.7646406 0.44456146

as.numeric(get(snpname)) 0.06634602 0.02927437 2.2663517 0.02351939

Testing sex-adjusted association between qt and SNP snp7 :

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.06697438 0.05879604 1.139097 0.2547782

sex 0.04174468 0.04087001 1.021401 0.3071689
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as.numeric(get(snpname)) -0.03723286 0.03153066 -1.180846 0.2377825

Testing sex-adjusted association between qt and SNP snp8 :

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.06807682 0.08455606 -0.8051087 0.4208378

sex 0.02760968 0.04102873 0.6729354 0.5010541

as.numeric(get(snpname)) 0.07124407 0.07228780 0.9855614 0.3244491

Testing sex-adjusted association between qt and SNP snp9 :

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.22558672 0.07313030 -3.0847229 0.0020610506

sex 0.01311497 0.04074702 0.3218632 0.7475848790

as.numeric(get(snpname)) 0.21002414 0.06122367 3.4304402 0.0006129721

Testing sex-adjusted association between qt and SNP snp10 :

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.02805887 0.06107457 -0.4594198 0.6459747

sex 0.02628396 0.04064009 0.6467496 0.5178563

as.numeric(get(snpname)) 0.03150834 0.04252005 0.7410231 0.4587525

Answer (Ex. 15) — SNPs 1, 4, 5 an 9 are significantly associated at nominal
P ≤ 0.05. SNP 6 is only marginally significantly associated unde the general
genotypic model. Here is a testing script (no need to reproduce that, just check
the results):

> for (i in 1:10) {

+ snpname <- paste("snp",i,sep="")

+ cat("\nTesting association between qt and SNP",snpname,":\n")

+ print(anova(lm(qt~get(snpname)),test="Chisq"))

+ #print(summary(lm(qt~get(snpname)))$coef)

+ }

Testing association between qt and SNP snp1 :

Analysis of Variance Table

Response: qt

Df Sum Sq Mean Sq F value Pr(>F)

get(snpname) 2 7.8 3.8995 3.9845 0.01873 *

Residuals 2371 2320.4 0.9787

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Testing association between qt and SNP snp2 :

Analysis of Variance Table

Response: qt

Df Sum Sq Mean Sq F value Pr(>F)

get(snpname) 1 0.18 0.18376 0.1841 0.6679

Residuals 2372 2367.23 0.99799



3.6. ANSWERS TO EXERCISES 69

Testing association between qt and SNP snp3 :

Analysis of Variance Table

Response: qt

Df Sum Sq Mean Sq F value Pr(>F)

get(snpname) 2 3.24 1.61986 1.658 0.1907

Residuals 2375 2320.41 0.97701

Testing association between qt and SNP snp4 :

Analysis of Variance Table

Response: qt

Df Sum Sq Mean Sq F value Pr(>F)

get(snpname) 2 7.68 3.8417 3.8628 0.02114 *

Residuals 2387 2373.94 0.9945

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Testing association between qt and SNP snp5 :

Analysis of Variance Table

Response: qt

Df Sum Sq Mean Sq F value Pr(>F)

get(snpname) 2 6.48 3.2418 3.2798 0.03781 *

Residuals 2380 2352.48 0.9884

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Testing association between qt and SNP snp6 :

Analysis of Variance Table

Response: qt

Df Sum Sq Mean Sq F value Pr(>F)

get(snpname) 2 5.49 2.74680 2.7808 0.06219 .

Residuals 2377 2347.91 0.98776

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Testing association between qt and SNP snp7 :

Analysis of Variance Table

Response: qt

Df Sum Sq Mean Sq F value Pr(>F)

get(snpname) 2 4.02 2.01212 2.0368 0.1307

Residuals 2365 2336.31 0.98787

Testing association between qt and SNP snp8 :

Analysis of Variance Table

Response: qt



70CHAPTER 3. INTRODUCTION TOGENETIC ASSOCIATION ANALYSIS IN R

Df Sum Sq Mean Sq F value Pr(>F)

get(snpname) 2 1.38 0.68987 0.6924 0.5005

Residuals 2368 2359.23 0.99630

Testing association between qt and SNP snp9 :

Analysis of Variance Table

Response: qt

Df Sum Sq Mean Sq F value Pr(>F)

get(snpname) 2 15.6 7.8014 7.9982 0.0003453 ***

Residuals 2358 2300.0 0.9754

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Testing association between qt and SNP snp10 :

Analysis of Variance Table

Response: qt

Df Sum Sq Mean Sq F value Pr(>F)

get(snpname) 2 1.19 0.59456 0.6041 0.5467

Residuals 2381 2343.47 0.98424

Answer (Ex. 16) — For ’snp1’, though the data are compatible with either
additive, dominant or recessive model, the additive model provides best fit to
the data (largest p-value), while the recessive ’B’ model provide the wors fit
(almost significantly worse than the general model):

> table(snp1,as.numeric(snp1))

snp1 1 2 3

A/A 1287 0 0

A/B 0 888 0

B/B 0 0 199

> table(snp1,(as.numeric(snp1)>=2))

snp1 FALSE TRUE

A/A 1287 0

A/B 0 888

B/B 0 199

> table(snp1,(as.numeric(snp1)>=3))

snp1 FALSE TRUE

A/A 1287 0

A/B 888 0

B/B 0 199

> model_gen <- lm(qt~snp1)

> summary(model_gen)

Call:

lm(formula = qt ~ snp1)
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Residuals:

Min 1Q Median 3Q Max

-3.5261 -0.6643 -0.0111 0.6765 3.5462

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.02846 0.02758 -1.032 0.3022

snp1A/B 0.08200 0.04316 1.900 0.0575 .

snp1B/B 0.18644 0.07536 2.474 0.0134 *

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 0.9893 on 2371 degrees of freedom

(126 observations deleted due to missingness)

Multiple R-squared: 0.00335, Adjusted R-squared: 0.002509

F-statistic: 3.985 on 2 and 2371 DF, p-value: 0.01873

> model_add <- lm(qt~as.numeric(snp1))

> model_dom <- lm(qt~I(as.numeric(snp1)>=2))

> model_rec <- lm(qt~I(as.numeric(snp1)>=3))

> anova(model_add,model_gen,test="Chisq")

Analysis of Variance Table

Model 1: qt ~ as.numeric(snp1)

Model 2: qt ~ snp1

Res.Df RSS Df Sum of Sq Pr(>Chi)

1 2372 2320.5

2 2371 2320.4 1 0.04886 0.8232

> anova(model_dom,model_gen,test="Chisq")

Analysis of Variance Table

Model 1: qt ~ I(as.numeric(snp1) >= 2)

Model 2: qt ~ snp1

Res.Df RSS Df Sum of Sq Pr(>Chi)

1 2372 2322.2

2 2371 2320.4 1 1.7733 0.1783

> anova(model_rec,model_gen,test="Chisq")

Analysis of Variance Table

Model 1: qt ~ I(as.numeric(snp1) >= 3)

Model 2: qt ~ snp1

Res.Df RSS Df Sum of Sq Pr(>Chi)

1 2372 2324.0

2 2371 2320.4 1 3.5332 0.05743 .

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

For SNPs 4, 5, 6, and 9 results are:

> for (i in c(4,5,6,9)) {

+ snpname <- paste("snp",i,sep="")
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+ cat("\nTesting SNP",snpname,":\n")

+ cursnp <- get(snpname)

+ model_gen <- lm(qt~cursnp)

+ print(summary(model_gen))

+ model_add <- lm(qt~as.numeric(cursnp))

+ model_dom <- lm(qt~I(as.numeric(cursnp)>=2))

+ model_rec <- lm(qt~I(as.numeric(cursnp)>=3))

+ print(anova(model_add,model_gen,test="Chisq"))

+ print(anova(model_dom,model_gen,test="Chisq"))

+ print(anova(model_rec,model_gen,test="Chisq"))

+ }

Testing SNP snp4 :

Call:

lm(formula = qt ~ cursnp)

Residuals:

Min 1Q Median 3Q Max

-3.4311 -0.6636 -0.0013 0.6737 3.5489

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.02132 0.02972 0.717 0.4733

cursnpA/A 0.02953 0.04423 0.668 0.5044

cursnpB/B -0.14481 0.06192 -2.339 0.0194 *

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 0.9973 on 2387 degrees of freedom

(110 observations deleted due to missingness)

Multiple R-squared: 0.003226, Adjusted R-squared: 0.002391

F-statistic: 3.863 on 2 and 2387 DF, p-value: 0.02114

Analysis of Variance Table

Model 1: qt ~ as.numeric(cursnp)

Model 2: qt ~ cursnp

Res.Df RSS Df Sum of Sq Pr(>Chi)

1 2388 2375.7

2 2387 2373.9 1 1.7489 0.1848

Analysis of Variance Table

Model 1: qt ~ I(as.numeric(cursnp) >= 2)

Model 2: qt ~ cursnp

Res.Df RSS Df Sum of Sq Pr(>Chi)

1 2388 2379.4

2 2387 2373.9 1 5.4391 0.01936 *

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1
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Analysis of Variance Table

Model 1: qt ~ I(as.numeric(cursnp) >= 3)

Model 2: qt ~ cursnp

Res.Df RSS Df Sum of Sq Pr(>Chi)

1 2388 2374.4

2 2387 2373.9 1 0.44342 0.5043

Testing SNP snp5 :

Call:

lm(formula = qt ~ cursnp)

Residuals:

Min 1Q Median 3Q Max

-3.4719 -0.6589 -0.0084 0.6622 3.5285

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.01401 0.02878 0.487 0.6264

cursnpA/A -0.09667 0.05611 -1.723 0.0851 .

cursnpB/B 0.05727 0.04607 1.243 0.2140

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 0.9942 on 2380 degrees of freedom

(117 observations deleted due to missingness)

Multiple R-squared: 0.002749, Adjusted R-squared: 0.00191

F-statistic: 3.28 on 2 and 2380 DF, p-value: 0.03781

Analysis of Variance Table

Model 1: qt ~ as.numeric(cursnp)

Model 2: qt ~ cursnp

Res.Df RSS Df Sum of Sq Pr(>Chi)

1 2381 2352.7

2 2380 2352.5 1 0.22152 0.6359

Analysis of Variance Table

Model 1: qt ~ I(as.numeric(cursnp) >= 2)

Model 2: qt ~ cursnp

Res.Df RSS Df Sum of Sq Pr(>Chi)

1 2381 2354.0

2 2380 2352.5 1 1.5273 0.2138

Analysis of Variance Table

Model 1: qt ~ I(as.numeric(cursnp) >= 3)

Model 2: qt ~ cursnp

Res.Df RSS Df Sum of Sq Pr(>Chi)

1 2381 2355.4
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2 2380 2352.5 1 2.9335 0.08494 .

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Testing SNP snp6 :

Call:

lm(formula = qt ~ cursnp)

Residuals:

Min 1Q Median 3Q Max

-3.4784 -0.6753 -0.0064 0.6703 3.5324

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.07617 0.05085 -1.498 0.1343

cursnpB/A 0.09417 0.05886 1.600 0.1097

cursnpB/B 0.14351 0.06096 2.354 0.0186 *

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 0.9939 on 2377 degrees of freedom

(120 observations deleted due to missingness)

Multiple R-squared: 0.002334, Adjusted R-squared: 0.001495

F-statistic: 2.781 on 2 and 2377 DF, p-value: 0.06219

Analysis of Variance Table

Model 1: qt ~ as.numeric(cursnp)

Model 2: qt ~ cursnp

Res.Df RSS Df Sum of Sq Pr(>Chi)

1 2378 2348.2

2 2377 2347.9 1 0.27462 0.598

Analysis of Variance Table

Model 1: qt ~ I(as.numeric(cursnp) >= 2)

Model 2: qt ~ cursnp

Res.Df RSS Df Sum of Sq Pr(>Chi)

1 2378 2349.1

2 2377 2347.9 1 1.1967 0.271

Analysis of Variance Table

Model 1: qt ~ I(as.numeric(cursnp) >= 3)

Model 2: qt ~ cursnp

Res.Df RSS Df Sum of Sq Pr(>Chi)

1 2378 2350.4

2 2377 2347.9 1 2.5284 0.1096

Testing SNP snp9 :
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Call:

lm(formula = qt ~ cursnp)

Residuals:

Min 1Q Median 3Q Max

-3.5482 -0.6673 0.0074 0.6546 3.6061

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.006298 0.021562 -0.292 0.77026

cursnpA/B 0.162230 0.065729 2.468 0.01365 *

cursnpB/B 1.002439 0.313057 3.202 0.00138 **

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 0.9876 on 2358 degrees of freedom

(139 observations deleted due to missingness)

Multiple R-squared: 0.006738, Adjusted R-squared: 0.005896

F-statistic: 7.998 on 2 and 2358 DF, p-value: 0.0003453

Analysis of Variance Table

Model 1: qt ~ as.numeric(cursnp)

Model 2: qt ~ cursnp

Res.Df RSS Df Sum of Sq Pr(>Chi)

1 2359 2303.9

2 2358 2300.0 1 3.9528 0.04411 *

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Analysis of Variance Table

Model 1: qt ~ I(as.numeric(cursnp) >= 2)

Model 2: qt ~ cursnp

Res.Df RSS Df Sum of Sq Pr(>Chi)

1 2359 2306.8

2 2358 2300.0 1 6.7911 0.008324 **

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Analysis of Variance Table

Model 1: qt ~ I(as.numeric(cursnp) >= 3)

Model 2: qt ~ cursnp

Res.Df RSS Df Sum of Sq Pr(>Chi)

1 2359 2305.9

2 2358 2300.0 1 5.942 0.01358 *

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1
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Chapter 4

Introduction to the
GenABEL-package

In this section, you will become familiar with the GenABEL-package library,
designed for GWA analysis. Compared to the genetics package, it provides
specific facilities for storage and manipulation of large amounts of data, very
fast tests for GWA analysis, and special functions to analyse and graphically
present the results of GWA analysis (thus ”analysis of analysis”).

Start R and load the GenABEL-package library using the command

> library(GenABEL)

After that, load the example data set using the command

> data(srdta)

4.1 General description of gwaa.data-class

The object you have loaded, srdta, belongs to the gwaa.data class. This is a
special R class developed to facilitate GWA analysis.

In GWA analysis, different types of data are used. These include the pheno-
typic and genotypic data on the study participants and chromosome and location
of every SNP. For every SNP, it is desirable to know the details of coding (how
are the alleles coded? – A, T, G, C? – as well as the strand – ’+’ or ’-’, ’top’ or
’bot’? – this coding is for).

One could attempt to store all phenotypes and genotypes together in a single
table, using, e.g. one row per study subject; than the columns will correspond
to study phenotypes and SNPs. For a typical GWA data set, this would lead
to a table of few thousands rows and few hundreds of thousands to millions of
columns. Such a format is generated when one downloads HapMap data for a
region. To store GWA data in such tables internally, within R, proves to be
inefficient. In GenABEL-package, a special data class, gwaa.data-class is used
to store GWA data.

You may consider an object of gwaa.data-class as a ’black box’ from which
you can get specific data using specific functions. If you are interested in the in-
ternal structure of the gwaa.data-class, you can find the description in section
B.1 (Internal structure of gwaa.data-class).

77



78 CHAPTER 4. INTRODUCTION TO THE GENABEL-PACKAGE

The data frame, which contains all phenotypic data in the study may be
accessed using the phdata function. Let us have a look at the first few rows of
the phenotypic data frame of srdta:

> phdata(srdta)[1:5,]

id sex age qt1 qt2 qt3 bt

p1 p1 1 43.4 -0.58 4.46 1.43 0

p2 p2 1 48.2 0.80 6.32 3.90 1

p3 p3 0 37.9 -0.52 3.26 5.05 1

p4 p4 1 53.8 -1.55 888.00 3.76 1

p5 p5 1 47.5 0.25 5.70 2.89 1

The rows of this data frame correspond to th estudy subjects, and the columns
correspond to the variables. There are two default variables, which are always
present in phdata. The first of these is “id”, which contains study subject
identification code. This identification code can be arbitrary character, numer,
or alphanumeric combination, but every person must be coded with an unique
ID. The second default variable is “sex”, where males are coded with ones (“1”)
and females are coded with zero (“0”).

It is important to understand that this data frame is not supposed to be
directly modified by the user, as its structure is coupled to the structure of
genotypic data. If at some point you need to manipulate (add/delete) the phe-
notypes included in phdata, you need to use such GenABEL-package functions
as add.phdata and del.phdata (see section 4.2).

The other part of an object of gwaa.data-class is gtdata, which contains
all GWA genetic information in an object of class snp.data class. It is not
supposed to be modified directly by user. The genotypic data can be accessed
through the gtdata function, e.g.

> gtdata(srdta[1:10, 1:10])

@nids = 10

@nsnps = 10

@nbytes = 3

@idnames = p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

@snpnames = rs10 rs18 rs29 rs65 rs73 rs114 rs128 rs130 rs143 rs150

@chromosome = 1 1 1 1 1 1 1 1 1 1

@coding = 08 0b 0c 03 04 03 0c 04 08 0f

@strand = 01 01 02 01 01 01 02 01 01 01

@map = 2500 3500 5750 13500 14250 24500 27000 27250 31000 33250

@male = 1 1 0 1 1 0 0 1 0 0

@gtps =

40 40 40 80 40 40 40 40 c0 c0

40 40 00 00 40 40 40 c0 40 40

40 40 00 80 40 40 40 40 c0 c0

As you can see, these data are of little direct use as these are stored in an
internal format – you need to coerce that to another data type if you want
to manipulate/analyse these data using non-GenABEL-package functions (see
section ??).

The number of individuals described in an object of gwaa.data-class can
be accessed through nids function, e.g.
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> nids(srdta)

[1] 2500

and the number of SNPs using the nsnps function:

> nsnps(srdta)

[1] 833

The IDs of the individuals included in the study can be accessed via the
idnames function, for example the IDs of the first 7 individuals in the study are

> idnames(srdta)[1:7]

[1] "p1" "p2" "p3" "p4" "p5" "p6" "p7"

The sex of the individuals can be accessed using the male function:

> male(srdta)[1:7]

p1 p2 p3 p4 p5 p6 p7

1 1 0 1 1 0 0

where males (heterogametic sex) are assigned with “1” and a homogametic sex
(females) are assigned the value “0”.

Names of SNPs can be accessed using the snpnames function; for example
the names of the first 10 SNPs in the srdta are

> snpnames(srdta)[1:10]

[1] "rs10" "rs18" "rs29" "rs65" "rs73" "rs114" "rs128" "rs130" "rs143"

[10] "rs150"

SNP annotation includes (shown for the first 10 SNPs only):

• Chromosome:

> chromosome(srdta)[1:10]

rs10 rs18 rs29 rs65 rs73 rs114 rs128 rs130 rs143 rs150

"1" "1" "1" "1" "1" "1" "1" "1" "1" "1"

• Map position

> map(srdta)[1:10]

rs10 rs18 rs29 rs65 rs73 rs114 rs128 rs130 rs143 rs150

2500 3500 5750 13500 14250 24500 27000 27250 31000 33250

• Coding (where the second allele is the “effect” or “coded” one):

> coding(srdta)[1:10]

rs10 rs18 rs29 rs65 rs73 rs114 rs128 rs130 rs143 rs150

"TG" "GA" "GT" "AT" "AG" "AT" "GT" "AG" "TG" "CA"
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For every SNP, the coding is represented with a pair of characters, for
example “AG”. For an “AG” polymorphism, you may expect “AA”, “AG”
and “GG” genotypes to be found in your population. The order (that is
“AG” vs. “GA”) is important – the first allele reported is the one which
will be used as a reference in association analysis, and thus the effects are
reported for the second allele. You can also access the reference allele with
the method refallele

> refallele(srdta)[1:10]

rs10 rs18 rs29 rs65 rs73 rs114 rs128 rs130 rs143 rs150

"T" "G" "G" "A" "A" "A" "G" "A" "T" "C"

and the effective (or ’coded’) allelel with

> effallele(srdta)[1:10]

rs10 rs18 rs29 rs65 rs73 rs114 rs128 rs130 rs143 rs150

"G" "A" "T" "T" "G" "T" "T" "G" "G" "A"

• The strand on which the coding is reported (’+’, ’-’ or missing, ’u’):

> strand(srdta)[1:10]

rs10 rs18 rs29 rs65 rs73 rs114 rs128 rs130 rs143 rs150

"+" "+" "-" "+" "+" "+" "-" "+" "+" "+"

Summary:

• GenABEL-package uses a special data class, gwaa.data-class, to store
GWA data.

• To access the content of an object of gwaa.data-class, a number of
functions is used

Exercise 1. Exploring IDs in srdta

Explore srdta.

1. How many people are included in the study?

2. How many of these are males?

3. How many are females?

4. What is male proportion?

Exercise 2. Exploring SNPs in srdta

Explore the SNPs contained in srdta using the functions to access SNP names
(snpnames) and map (map) location

1. What are names of markers located after 2,490,000 b.p.?

2. Between 1,100,000 and 1,105,000 b.p.?
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4.2 Accessing and modifying phenotypic data

As was already mentioned, the object returned by phdata contains phenotypic
data and is a conventional data frame, wich obligatory includes ’id’ and ’sex’
variables, and ordered an a way that it couples to the genotypic data.

Being a data frame, phdata may be accessed using the corresponding meth-
ods:

> phdata(srdta)[1:5, ]

id sex age qt1 qt2 qt3 bt

p1 p1 1 43.4 -0.58 4.46 1.43 0

p2 p2 1 48.2 0.80 6.32 3.90 1

p3 p3 0 37.9 -0.52 3.26 5.05 1

p4 p4 1 53.8 -1.55 888.00 3.76 1

p5 p5 1 47.5 0.25 5.70 2.89 1

> class(phdata(srdta))

[1] "data.frame"

> phdata(srdta)[1:5, 2]

[1] 1 1 0 1 1

> phdata(srdta)[1:5, "sex"]

[1] 1 1 0 1 1

> phdata(srdta)$sex[1:5]

[1] 1 1 0 1 1

The modification of the phenotypic data is performed using special meth-
ods, because of specific restrictions on phenotypic data frames. There are two
main functions which allow you to add (add.phdata) and delete (del.phdata)
phenotypes from phdata part of an object of gwaa.data-class.

For example, if you want to add a variable (say, the square of age) computed
from the “age” variable of srdta

> phdata(srdta)[1:5, ]

id sex age qt1 qt2 qt3 bt

p1 p1 1 43.4 -0.58 4.46 1.43 0

p2 p2 1 48.2 0.80 6.32 3.90 1

p3 p3 0 37.9 -0.52 3.26 5.05 1

p4 p4 1 53.8 -1.55 888.00 3.76 1

p5 p5 1 47.5 0.25 5.70 2.89 1

> age2 <- phdata(srdta)$age^2

you need to use the add.phdata function:
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> srdta <- add.phdata(srdta, newph=age2, name="age_squared")

> phdata(srdta)[1:5, ]

id sex age qt1 qt2 qt3 bt age_squared

p1 p1 1 43.4 -0.58 4.46 1.43 0 1883.56

p2 p2 1 48.2 0.80 6.32 3.90 1 2323.24

p3 p3 0 37.9 -0.52 3.26 5.05 1 1436.41

p4 p4 1 53.8 -1.55 888.00 3.76 1 2894.44

p5 p5 1 47.5 0.25 5.70 2.89 1 2256.25

You can add more than one variable at once using the same function, how-
ever, in this case the second (“newph”) argument of the function should be a
data frame, which contains an ’id’ variable specifing the IDs of the individuals.
Imagine we have the data for individuals ’p1’, ’p2’ and ’p7’ (we will generate
random data for them; pay attention only to the result):

> newvalues <- matrix( rnorm(3*5), 3, 5 )

> newdata <- data.frame(id=c("p1", "p2", "p7"),

+ ph1=1, ph2=1, ph3=1, ph4=1, ph5=1)

> newdata[, c(2:6)] <- newvalues

> newdata

id ph1 ph2 ph3 ph4 ph5

1 p1 -0.7456830 0.07034531 0.6118969 1.017129 -0.2248321

2 p2 1.1205270 -1.43527067 0.4614292 -1.016423 2.0098503

3 p7 -0.9747375 0.18167733 -1.5388997 1.345695 -0.2691746

These data can be added to the phenotypic data with

> srdta <- add.phdata(srdta,newdata)

> phdata(srdta)[1:10, ]

id sex age qt1 qt2 qt3 bt age_squared ph1 ph2

p1 p1 1 43.4 -0.58 4.46 1.43 0 1883.56 -0.7456830 0.07034531

p2 p2 1 48.2 0.80 6.32 3.90 1 2323.24 1.1205270 -1.43527067

p3 p3 0 37.9 -0.52 3.26 5.05 1 1436.41 NA NA

p4 p4 1 53.8 -1.55 888.00 3.76 1 2894.44 NA NA

p5 p5 1 47.5 0.25 5.70 2.89 1 2256.25 NA NA

p6 p6 0 45.0 0.15 4.65 1.87 0 2025.00 NA NA

p7 p7 0 52.0 -0.56 4.64 2.49 0 2704.00 -0.9747375 0.18167733

p8 p8 1 42.5 NA 5.77 2.68 1 1806.25 NA NA

p9 p9 0 29.7 -2.26 0.71 1.45 0 882.09 NA NA

p10 p10 0 45.8 -1.32 3.26 0.85 0 2097.64 NA NA

ph3 ph4 ph5

p1 0.6118969 1.017129 -0.2248321

p2 0.4614292 -1.016423 2.0098503

p3 NA NA NA

p4 NA NA NA

p5 NA NA NA

p6 NA NA NA

p7 -1.5388997 1.345695 -0.2691746

p8 NA NA NA
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p9 NA NA NA

p10 NA NA NA

Finally, if you need, you can delete some phenotypes from the phdata using
del.phdata function. Let us delete the phenotypes we have just added:

> srdta <- del.phdata(srdta,

+ c("age_squared", "ph1", "ph2", "ph3", "ph4", "ph5"))

> phdata(srdta)[1:10, ]

id sex age qt1 qt2 qt3 bt

p1 p1 1 43.4 -0.58 4.46 1.43 0

p2 p2 1 48.2 0.80 6.32 3.90 1

p3 p3 0 37.9 -0.52 3.26 5.05 1

p4 p4 1 53.8 -1.55 888.00 3.76 1

p5 p5 1 47.5 0.25 5.70 2.89 1

p6 p6 0 45.0 0.15 4.65 1.87 0

p7 p7 0 52.0 -0.56 4.64 2.49 0

p8 p8 1 42.5 NA 5.77 2.68 1

p9 p9 0 29.7 -2.26 0.71 1.45 0

p10 p10 0 45.8 -1.32 3.26 0.85 0

Summary:

• Phenotypic data contained in an object of gwaa.data-class can be ac-
cessed using the phdata functions

• You can add phenotypes using the add.phdata function

• You can delete phenotypes using the del.phdata function

4.3 Sub-setting and coercing gwaa.data

It is possible to sub-set the object, which stores the GWA data in the man-
ner similar to that used for conventional R matrices and data frames. Very
primitively, you may think of an object of class gwaa.data as a matrix whose
rows correspond to study subjects and columns correspond to SNPs studied
(though the actual object is more complicated). For example, if we would like
to investigate the content of srdta for the first 5 people and 3 SNPs, we can
run

> ssubs <- srdta[1:5, 1:3]

> class(ssubs)

[1] "gwaa.data"

attr(,"package")

[1] "GenABEL"
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As you can see, by sub-setting we obtained a smaller object of gwaa.data-class.
The two major parts it contains are phenotypic data, which can be accessed
through phdata (discussed in section 4.2):

> phdata(ssubs)

id sex age qt1 qt2 qt3 bt

p1 p1 1 43.4 -0.58 4.46 1.43 0

p2 p2 1 48.2 0.80 6.32 3.90 1

p3 p3 0 37.9 -0.52 3.26 5.05 1

p4 p4 1 53.8 -1.55 888.00 3.76 1

p5 p5 1 47.5 0.25 5.70 2.89 1

and genotypc data, which can be accessed via the gtdata function:

> gtdata(ssubs)

@nids = 5

@nsnps = 3

@nbytes = 2

@idnames = p1 p2 p3 p4 p5

@snpnames = rs10 rs18 rs29

@chromosome = 1 1 1

@coding = 08 0b 0c

@strand = 01 01 02

@map = 2500 3500 5750

@male = 1 1 0 1 1

@gtps =

40 40 40

40 40 00

whose content is not quite straightforward to read.
To get human-readable information, a genotypic object should be coerced to

a regular R data type, e.g. character, using the as.character() function:

> as.character(gtdata(ssubs))

rs10 rs18 rs29

p1 "T/T" "G/G" "G/G"

p2 "T/T" "G/G" NA

p3 "T/T" "G/G" NA

p4 "T/T" "G/G" NA

p5 "T/T" "G/A" "G/G"

Another useful coercion is to ”numeric”:

> as.numeric(gtdata(ssubs))

rs10 rs18 rs29

p1 0 0 0

p2 0 0 NA

p3 0 0 NA

p4 0 0 NA

p5 0 1 0
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Note that conversion to numeric happened according to the underlying genotype
and the rules specified by SNP coding:

> coding(ssubs)

rs10 rs18 rs29

"TG" "GA" "GT"

– the genotype, which is made of the ’first’ allele of the ’code’ is converted to
“0”, the heterozygote to “1” and a homozygote for the second allele is converted
to “2”.

For example, when the coding is “GA”, as it is for the rs18 (the second
SNP), homozygotes for the first allele, as specified by coding (“G”) are converted
to zeros (“0”), heterozygotes are converted to ones (“1”), and homozygotes for
the second allele (“A”) are converted to twos (“2”). Clearly, when numerically
converted data are used for association analysis, the effects will be estimated
for the second allele, while first will be used as a reference.

Genotypic data converted to standard R format can be used in any further
analysis.

Several useful genetic analysis libraries were developed for R. These include
genetics (analysis of linkage disequilibrium and many other useful functions)
and haplo.stats (analysis of association between traits and haplotypes). These
use their own genetic data formats.

One can translate GenABEL-package genetic data to the format used by
”genetics” library using as.genotype():

> as.genotype(gtdata(ssubs))

NOTE: THIS PACKAGE IS NOW OBSOLETE.

The R-Genetics project has developed an set of enhanced genetics

packages to replace 'genetics'. Please visit the project homepage

at http://rgenetics.org for informtion.

rs10 rs18 rs29

p1 T/T G/G G/G

p2 T/T G/G <NA>

p3 T/T G/G <NA>

p4 T/T G/G <NA>

p5 T/T G/A G/G

To translate GenABEL-package data to the format used by ”haplo.stats” you
can use function as.hsgeno()

> as.hsgeno(gtdata(ssubs))

rs10.a1 rs10.a2 rs18.a1 rs18.a2 rs29.a1 rs29.a2

p1 1 1 1 1 1 1

p2 1 1 1 1 NA NA

p3 1 1 1 1 NA NA

p4 1 1 1 1 NA NA

p5 1 1 1 2 1 1
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Actually, most users will not need the latter function, as GenABEL-package

provides a functional interface to ”haplo.stats”(such GenABEL-package functions
as scan.haplo() and scan.haplo.2D()).

It is possible to select sub-sets of gwaa.data-class based not only on index
(e.g. first 10 people and SNP number 33), but also based on names.

For example, if we would like to retrieve phenotypic data on people with IDs
”p141”, ”p147” and ”p2000”, we can use

> phdata( srdta[c("p141", "p147", "p2000"), ] )

id sex age qt1 qt2 qt3 bt

p141 p141 0 47.2 0.51 5.23 2.17 0

p147 p147 0 43.2 0.14 4.47 1.73 0

p2000 p2000 0 43.1 -1.53 2.78 2.70 1

here, the first part of expression sub-sets srdta on selected IDs, and the sec-
ond tells which part of the retrieved sub-set we want to see. You can try
srdta[c("p141", "p147", "p2000"),], but be prepared to see long output,
as all information will be reported.

In a similar manner, we can also select on SNP name. For example, if we
are interested to see information on SNPs ”rs10” and ”rs29” for above people,
we can run

> phdata(srdta[c("p141", "p147", "p2000"), c("rs10", "rs29")])

id sex age qt1 qt2 qt3 bt

p141 p141 0 47.2 0.51 5.23 2.17 0

p147 p147 0 43.2 0.14 4.47 1.73 0

p2000 p2000 0 43.1 -1.53 2.78 2.70 1

> gtdata(srdta[c("p141", "p147", "p2000"), c("rs10", "rs29")])

@nids = 3

@nsnps = 2

@nbytes = 1

@idnames = p141 p147 p2000

@snpnames = rs10 rs29

@chromosome = 1 1

@coding = 08 0c

@strand = 01 02

@map = 2500 5750

@male = 0 0 0

@gtps =

40 40

To see the actual genotypes for the above three people and two SNPs, use

> as.character(srdta[c("p141", "p147", "p2000"), c("rs10", "rs29")])

rs10 rs29

p141 "T/T" "G/G"

p147 "T/T" "G/G"

p2000 "T/G" "G/T"
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or

> as.numeric(srdta[c("p141", "p147", "p2000"), c("rs10", "rs29")])

rs10 rs29

p141 0 0

p147 0 0

p2000 1 1

Exercise 3. Exploring rs114

Explore genotypes for SNP ”rs114”

1. What is the coding and which allele is the reference one?

2. What is the frequency of non-reference (“effect”) allele in total sample?

3. What is the frequency of the effect allele in males?

4. What is the frequency of the effect allele in females?

5. What is the frequency of the reference allele in the total sample, males
and females?

Summary:

• It is possible to obtain subsets of objects of gwaa.data-class and
snp.data-class using the standard 2D sub-setting model [i, j], where
i corresponds to study subjects and j corresponds to SNPs.

• It is possible to provide ID and SNP names instead of indexes when sub-
setting an object of class gwaa.data-class.

• The function as.numeric() converts genotypic data from
snp.data-class to regular integer numbers, which can be used in
analysis with R.

• The function as.character() converts genotypic data from
snp.data-class to character format.

• The function as.genotype() converts genotypic data from
snp.data-class to the format used by the genetics library.

• The function as.hsgeno() converts genotypic data from snp.data-class

to the format used by the haplo.stats library.

4.4 Exploring genetic data

Implementation of the function summary() to summarize the genotypic part of
a gwaa.data-class object is very useful in genetic data exploration and quality
control (QC). Let us try application of this function to the ssubs:
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> a <- summary(ssubs)

> a

Chromosome Position Strand A1 A2 NoMeasured CallRate Q.2 P.11 P.12 P.22

rs10 1 2500 + T G 5 1.0 0.0 5 0 0

rs18 1 3500 + G A 5 1.0 0.1 4 1 0

rs29 1 5750 - G T 2 0.4 0.0 2 0 0

Pexact Fmax Plrt

rs10 1 0.0000000 1.0000000

rs18 1 -0.1111111 0.7386227

rs29 1 0.0000000 1.0000000

In the first section, a summary is generated for the phenotypic data. In
the second section, a summary is generated for the genotypic data. In this
section, NoMeasured refers to the number of genotypes scores, CallRate to the
proportion of these, Q.2 is the frequency of the ’B’ allele. The counts in three
genotypic classes are provided next. Pexact refers to exact P -value for the test
of Hardy-Weinberg equilibrium.

As you have seen above, an object of the class gwaa.data-class is sub-
settable in the standard manner: [i, j], where i is the index of a study subject
and j is the index of a SNP. Importantly, i could be a list of indexes:

> vec <- which(phdata(srdta)$age >= 65)

> vec

[1] 64 122 186 206 207 286 385 386 492 514 525 536 545 565 613

[16] 632 649 673 701 779 799 981 1008 1131 1186 1223 1281 1383 1471 1489

[31] 1501 1565 1584 1673 1679 1782 1821 1832 1866 1891 1953 2081 2085 2140 2224

[46] 2268 2291 2384 2420 2453

> summary( gtdata(srdta[vec, 1:3]) )

Chromosome Position Strand A1 A2 NoMeasured CallRate Q.2 P.11 P.12

rs10 1 2500 + T G 48 0.96 0.1354167 36 11

rs18 1 3500 + G A 47 0.94 0.2765957 25 18

rs29 1 5750 - G T 45 0.90 0.1555556 32 12

P.22 Pexact Fmax Plrt

rs10 1 1.0000000 0.02131603 0.8843626

rs18 4 0.7245853 0.04298643 0.7697067

rs29 1 1.0000000 -0.01503759 0.9188943

This shows summary of first three genotypes for people with age greater then or
equal to 65 y.o. The same result may be achieved by sub-setting using a vector
of logical values:

> vec <- (phdata(srdta)$age >= 65)

> table(vec)

vec

FALSE TRUE

2450 50

> summary( gtdata(srdta[vec, 1:3]) )
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Chromosome Position Strand A1 A2 NoMeasured CallRate Q.2 P.11 P.12

rs10 1 2500 + T G 48 0.96 0.1354167 36 11

rs18 1 3500 + G A 47 0.94 0.2765957 25 18

rs29 1 5750 - G T 45 0.90 0.1555556 32 12

P.22 Pexact Fmax Plrt

rs10 1 1.0000000 0.02131603 0.8843626

rs18 4 0.7245853 0.04298643 0.7697067

rs29 1 1.0000000 -0.01503759 0.9188943

or a list with IDs of study subjects:

> vec1 <- idnames(srdta)[vec]

> vec1

[1] "p64" "p122" "p186" "p206" "p207" "p286" "p385" "p386" "p492"

[10] "p514" "p525" "p536" "p545" "p565" "p613" "p632" "p649" "p673"

[19] "p701" "p779" "p799" "p981" "p1008" "p1131" "p1186" "p1223" "p1281"

[28] "p1383" "p1471" "p1489" "p1501" "p1565" "p1584" "p1673" "p1679" "p1782"

[37] "p1821" "p1832" "p1866" "p1891" "p1953" "p2081" "p2085" "p2140" "p2224"

[46] "p2268" "p2291" "p2384" "p2420" "p2453"

> summary( gtdata(srdta[vec1, 1:3]) )

Chromosome Position Strand A1 A2 NoMeasured CallRate Q.2 P.11 P.12

rs10 1 2500 + T G 48 0.96 0.1354167 36 11

rs18 1 3500 + G A 47 0.94 0.2765957 25 18

rs29 1 5750 - G T 45 0.90 0.1555556 32 12

P.22 Pexact Fmax Plrt

rs10 1 1.0000000 0.02131603 0.8843626

rs18 4 0.7245853 0.04298643 0.7697067

rs29 1 1.0000000 -0.01503759 0.9188943

Let us explore the object returned by the summary function when applied to
snp.data class in more detail:

> a <- summary( gtdata(srdta[vec1, 1:3]) )

> class(a)

[1] "data.frame"

Thus, the object returned is a data.frame. Therefore it should have dimensions
and names:

> dim(a)

[1] 3 14

> names(a)

[1] "Chromosome" "Position" "Strand" "A1" "A2"

[6] "NoMeasured" "CallRate" "Q.2" "P.11" "P.12"

[11] "P.22" "Pexact" "Fmax" "Plrt"
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Figure 4.1: Histogram of the call rate.

Indeed, we derived 8 characteristics (”NoMeasured”, ”CallRate”, ”Q.2”, ”P.11”,
”P.12”, ”P.22”, ”Pexact”, ”Chromosome”) for the first 3 SNPs.

Exercise 4. Testing HWE for 10 SNPs

Test if Hardy-Weinberg equilibrium holds for the first 10 SNPs

1. Total sample

2. In cases (bt is 1)

3. In controls (bt is 0)

Let us analyse the distribution of call rate in the whole study. For this, we
first need to obtain the vector of call rates:

> sumgt <- summary(gtdata(srdta))

> crate <- sumgt[, "CallRate"]

This vector may be depicted by a histogram

> hist(crate)

which shows that most SNPs have call rate between 93 and 97% (Figure 4.1).
As a next step, you would like to produce a summary table, showing how

many markers had call rate lower than, say, 93%, between 93 and 95%, between
95 and 99% and more than 99%. You can use the catable() command for that:
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> catable(crate, c(.93, .95, .99))

X<=0.93 0.93<X<=0.95 0.95<X<=0.99 X>0.99

No 0 415.000 418.000 0

Prop 0 0.498 0.502 0

A similar procedure may be applied to see deviation from HWE:

> hwp <- sumgt[, "Pexact"]

> catable(hwp, c(0.05/nsnps(srdta), 0.01, 0.05, 0.1))

X<=6.00240096038415e-05 6.00240096038415e-05<X<=0.01 0.01<X<=0.05

No 2.000 7.000 23.000

Prop 0.002 0.008 0.028

0.05<X<=0.1 X>0.1

No 31.000 770.000

Prop 0.037 0.924

The first cut-off category will detect SNPs which are deviating from HWE at
the Bonferroni-corrected P -level.

However, for these data it will make more sense to table the cumulative
distribution:

> catable(hwp, c(0.05/nsnps(srdta), 0.01, 0.05, 0.1), cum=TRUE)

X<=6.00240096038415e-05 X<=0.01 X<=0.05 X<=0.1 all X

No 2.000 9.000 32.000 63.000 833

Prop 0.002 0.011 0.038 0.076 1

If you would like to investigate the minor allele frequency (MAF) distribu-
tion, the same logic would apply. First, derive the MAF with

> afr <- sumgt[, "Q.2"]

> maf <- pmin(afr, (1. - afr))

Next, generate histograms for frequency and MAF:

> par(mfcol=c(2,1))

> hist(afr)

> hist(maf)

(shown in Figure 4.2) and then generate a table describing the frequency distri-
bution:

> catable(afr, c(0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, 0.99))

X<=0.01 0.01<X<=0.05 0.05<X<=0.1 0.1<X<=0.2 0.2<X<=0.5 0.5<X<=0.8

No 22.000 53.000 99.000 132.000 313.000 187.000

Prop 0.026 0.064 0.119 0.158 0.376 0.224

0.8<X<=0.9 0.9<X<=0.95 0.95<X<=0.99 X>0.99

No 18.000 8.00 1.000 0

Prop 0.022 0.01 0.001 0

> catable(maf, c(0, 0.01, 0.05, 0.1, 0.2), cum=TRUE)
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Figure 4.2: Histogram of the call rate.
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X<=0 X<=0.01 X<=0.05 X<=0.1 X<=0.2 all X

No 0 22.000 76.000 183.00 333.0 833

Prop 0 0.026 0.091 0.22 0.4 1

Note that we used “0” as the first category – this will give you the number of
monomorphic SNPs which we recommend to exclude from analysis.

Another function, perid.summary, produces summary SNP statistics per
person. Let us try producing this summary for the first 10 people:

> perid.summary(srdta[1:10, ])

NoMeasured NoPoly Hom E(Hom) Var F CallPP

p1 790 707 0.7987342 0.6600319 0.4048662 0.407986159 0.9483794

p2 792 714 0.7474747 0.6585152 0.5090002 0.260508049 0.9507803

p3 783 700 0.6206897 0.6618209 0.4332890 -0.121625581 0.9399760

p4 789 705 0.6070976 0.6601276 0.5251900 -0.156029161 0.9471789

p5 790 707 0.6658228 0.6619821 0.5288936 0.011362319 0.9483794

p6 787 703 0.7662008 0.6622227 0.3770418 0.307830275 0.9447779

p7 794 709 0.6309824 0.6587669 0.4527349 -0.081423884 0.9531813

p8 793 711 0.7023960 0.6587232 0.5163296 0.127968868 0.9519808

p9 788 711 0.6675127 0.6573272 0.5599395 0.029723748 0.9459784

p10 797 713 0.6587202 0.6614644 0.4889042 -0.008105999 0.9567827

Het

p1 0.2012658

p2 0.2525253

p3 0.3793103

p4 0.3929024

p5 0.3341772

p6 0.2337992

p7 0.3690176

p8 0.2976040

p9 0.3324873

p10 0.3412798

This table lists the number of genotypes scored for the person, call rate, and
heterozygosity. The outliers who have increased average heterozygosity may be
suggestive of contaminated DNA samples.

Let us analyse the distribution of heterozygosity:

> het <- perid.summary(srdta)$Het

> mean(het)

[1] 0.3309457

> catable(het, c(0.1, 0.25, 0.3, 0.35, 0.5))

X<=0.1 0.1<X<=0.25 0.25<X<=0.3 0.3<X<=0.35 0.35<X<=0.5 X>0.5

No 7.000 73.000 339.000 1281.000 800.00 0

Prop 0.003 0.029 0.136 0.512 0.32 0

> hist(het)
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Figure 4.3: Histogram of heterozygosity.
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The resulting histogram is shown in Figure 4.3. It is easy to see that a few
people have very low heterozygosity, but there are no outliers with extremely
high values.

In this section, we covered the low-level functions summary and perid.summary.
On these functions a higher level genetic data quality control function, check.marker,
is based. That function will be covered in the next section.

Summary:

• When the summary() function is applied to a gtdata subset of
gwaa.data-class, it returns summary statistics for the SNPs, including
an exact test for Hardy-Weinberg equilibrium.

• When the perid.summary() function is applied to an object of
gwaa.data-class (or the gtdata part of it), it returns per-person sum-
mary statistics, including the call rate within this person and its heterozy-
gosity.

Exercise 5. Characterizing call rate

Characterise the distribution of call rates within study subjects and produce
a histogram. How many people have a call rate below 93%?

4.5 Answers to exercises

Answer (Ex. 1) — Load the data with

> data(srdta)

Number of people:

> nids(srdta)

[1] 2500

Number of males:

> sum(male(srdta))

[1] 1275

Number of females:

> nids(srdta) - sum(male(srdta))

[1] 1225

. . . you could get the same answer like this1:

> sum(male(srdta) == 0)

[1] 1225

1 This is something covered later in the section 4.3 (”Sub-setting and coercing gwaa.data”)
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The proportion of males can be computed using above results

> sum(male(srdta)) / nids(srdta)

[1] 0.51

or by using the mean() function:

> mean(male(srdta))

[1] 0.51

Answer (Ex. 2) — The names of markers located after 2,490,000 b.p. are

> vec <- (map(srdta) > 2490000)

> snpnames(srdta)[vec]

[1] "rs9273" "rs9277" "rs9279" "rs9283"

The names of markers located between 1,100,000 and 1,105,000 b.p. are:

> vec <- (map(srdta) > 1100000 & map(srdta) < 1105000)

> snpnames(srdta)[vec]

[1] "rs4180" "rs4186" "rs4187"

Answer (Ex. 3) — To learn what allele of “rs114” is the reference you need
to run

> coding(srdta)["rs114"]

rs114

"AT"

Here, the first (“A”) allele is the reference and thus the second (“T”) is the
effect allele. Remember that when using the as.numeric function to convert
the genotypes to human-readable and R-operatable format, the homozygotes
for reference will be coded as “0”, heterozygotes as “1” and the non-reference
(“effect”) homozygotes will be coded as “2”:

> table(as.character( gtdata(srdta[, "rs114"] )),

+ as.numeric( gtdata(srdta[,"rs114"] )))

0 1 2

A/A 1868 0 0

A/T 0 491 0

T/T 0 0 34

To compute the frequency of the effect allele of SNP “rs114” in the total sample,
you can go two ways. First, we can try to take a sum of all “rs114” genotypes
and divide it by twice the number of people:

> a <- as.numeric(gtdata(srdta[, "rs114"]))

> sum(a)

[1] NA

This, however, returns NA, because some of the genotypes are missing. We can
deal with this problem by running sum() with the option na.rm=TRUE:

> sum(a, na.rm=TRUE)

[1] 559
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so the number of “effect” alleles is 559.

However, now we do not know what was the number of people for whom the
genotype was measured! – nids would return the total number of people, but
not the number of those measured for “rs114”.

This problem can be dealt with through using the is.na(A) function which
returns true when some element of A is not measured. Thus, the number of
people with measured genotype for “rs114” is

> nids(srdta)

[1] 2500

> nmeasured <- sum(!is.na(a))

> nmeasured

[1] 2393

(note the “!” before is.na, which means NOT, so we get these elements which
are not NA). Consequently, the frequency of the “effect” allele is

> sum(a, na.rm=TRUE) / (2 * nmeasured)

[1] 0.116799

An easier way would be to compute mean value of “rs114” with the mean( ...,

na.rm=TRUE) function and divide it by 2:

> mean(a, na.rm=TRUE)/2

[1] 0.116799

To compute the frequency of the effect allele of “rs114” in males, you can use

> amale <- as.numeric( gtdata(srdta[male(srdta)==1, "rs114"]) )

> mean(amale, na.rm=TRUE)/2

[1] 0.1164216

To compute the frequency of the effect allele in females, you can use

> afemale <- as.numeric( gtdata(srdta[male(srdta)==0, "rs114"]) )

> mean(afemale, na.rm=TRUE)/2

[1] 0.1171942

The frequencies of the reference allele are computed very simply as one minus
the frequency of the effective allele:

> 1 - mean(a, na.rm=TRUE)/2

[1] 0.883201

> 1 - mean(amale, na.rm=TRUE)/2

[1] 0.8835784

> 1 - mean(afemale, na.rm=TRUE)/2

[1] 0.8828058

Answer (Ex. 4) — To test for HWE in first 10 SNPs in total sample

> summary( gtdata(srdta[, 1:10]) )
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Chromosome Position Strand A1 A2 NoMeasured CallRate Q.2 P.11 P.12

rs10 1 2500 + T G 2384 0.9536 0.13255034 1792 552

rs18 1 3500 + G A 2385 0.9540 0.28029350 1232 969

rs29 1 5750 - G T 2374 0.9496 0.13774221 1763 568

rs65 1 13500 + A T 2378 0.9512 0.71972246 182 969

rs73 1 14250 + A G 2385 0.9540 0.01341719 2331 44

rs114 1 24500 + A T 2393 0.9572 0.11679900 1868 491

rs128 1 27000 - G T 2391 0.9564 0.02488499 2281 101

rs130 1 27250 + A G 2379 0.9516 0.69377890 222 1013

rs143 1 31000 + T G 2377 0.9508 0.47728229 655 1175

rs150 1 33250 + C A 2369 0.9476 0.65998312 267 1077

P.22 Pexact Fmax Plrt

rs10 40 7.897327e-01 -0.006880004 7.355343e-01

rs18 184 7.608230e-01 -0.007017332 7.315304e-01

rs29 43 7.955141e-01 -0.007241148 7.227853e-01

rs65 1227 6.475412e-01 -0.010016746 6.246577e-01

rs73 10 1.792470e-12 0.303150234 1.281239e-12

rs114 34 7.663683e-01 0.005487764 7.894076e-01

rs128 9 9.408599e-06 0.129600629 1.000431e-05

rs130 1144 9.615127e-01 -0.002140946 9.168114e-01

rs143 547 6.512540e-01 0.009313705 6.497695e-01

rs150 1025 5.518478e-01 -0.012948436 5.281254e-01

To test it in cases

> summary( gtdata(srdta[phdata(srdta)$bt==1, 1:10]) )

Chromosome Position Strand A1 A2 NoMeasured CallRate Q.2 P.11

rs10 1 2500 + T G 1197 0.9622186 0.13700919 888

rs18 1 3500 + G A 1189 0.9557878 0.28511354 605

rs29 1 5750 - G T 1176 0.9453376 0.14285714 859

rs65 1 13500 + A T 1185 0.9525723 0.72700422 83

rs73 1 14250 + A G 1187 0.9541801 0.01053075 1167

rs114 1 24500 + A T 1190 0.9565916 0.12184874 918

rs128 1 27000 - G T 1183 0.9509646 0.02409129 1129

rs130 1 27250 + A G 1188 0.9549839 0.68392256 117

rs143 1 31000 + T G 1192 0.9581994 0.48489933 320

rs150 1 33250 + C A 1182 0.9501608 0.66624365 127

P.12 P.22 Pexact Fmax Plrt

rs10 290 19 4.635677e-01 -0.024514202 3.871421e-01

rs18 490 94 7.759191e-01 -0.010949158 7.052930e-01

rs29 298 19 2.832575e-01 -0.034722222 2.214580e-01

rs65 481 621 4.647357e-01 -0.022595469 4.348023e-01

rs73 15 5 3.988770e-08 0.393614304 2.423624e-08

rs114 254 18 8.924018e-01 0.002606831 9.285104e-01

rs128 51 3 2.747904e-02 0.083175674 3.157174e-02

rs130 517 554 8.407527e-01 -0.006569292 8.207476e-01

rs143 588 284 6.848365e-01 0.012522119 6.654994e-01

rs150 535 520 5.568363e-01 -0.017756050 5.409408e-01

in controls

> summary( gtdata(srdta[phdata(srdta)$bt==0, 1:10]) )
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Chromosome Position Strand A1 A2 NoMeasured CallRate Q.2 P.11

rs10 1 2500 + T G 1177 0.9453815 0.12744265 897

rs18 1 3500 + G A 1185 0.9518072 0.27426160 623

rs29 1 5750 - G T 1188 0.9542169 0.13215488 897

rs65 1 13500 + A T 1183 0.9502008 0.71344041 98

rs73 1 14250 + A G 1188 0.9542169 0.01641414 1154

rs114 1 24500 + A T 1192 0.9574297 0.11157718 941

rs128 1 27000 - G T 1197 0.9614458 0.02589808 1141

rs130 1 27250 + A G 1181 0.9485944 0.70491109 104

rs143 1 31000 + T G 1174 0.9429719 0.46805792 334

rs150 1 33250 + C A 1176 0.9445783 0.65306122 139

P.12 P.22 Pexact Fmax Plrt

rs10 260 20 7.933317e-01 0.006751055 8.178295e-01

rs18 474 88 9.418133e-01 -0.004812165 8.683219e-01

rs29 268 23 5.288436e-01 0.016525913 5.737373e-01

rs65 482 603 8.871139e-01 0.003540522 9.031273e-01

rs73 29 5 6.941219e-06 0.244001185 5.537568e-06

rs114 236 15 8.846527e-01 0.001356081 9.627084e-01

rs128 50 6 7.745807e-05 0.172107564 7.552399e-05

rs130 489 588 8.887439e-01 0.004728114 8.710047e-01

rs143 581 259 8.604122e-01 0.006165442 8.326938e-01

rs150 538 499 7.968462e-01 -0.009574142 7.424986e-01

SNPs ’rs73’ and ’rs128’ are out of HWE (at p ≤ 0.05) in the total sample, and
also in cases and controls.

Answer (Ex. 5) — To characterize ID call rate, you can run the following
commands:

> idsummary <- perid.summary(srdta)

> idsummary[1:5, ]

NoMeasured NoPoly Hom E(Hom) Var F CallPP

p1 790 790 0.7987342 0.6696986 0.5448255 0.3906601 0.9483794

p2 792 792 0.7474747 0.6685502 0.5390602 0.2381191 0.9507803

p3 783 783 0.6206897 0.6712102 0.4888671 -0.1536561 0.9399760

p4 789 789 0.6070976 0.6700900 0.4077382 -0.1909382 0.9471789

p5 790 790 0.6658228 0.6710232 0.4340010 -0.0158077 0.9483794

Het

p1 0.2012658

p2 0.2525253

p3 0.3793103

p4 0.3929024

p5 0.3341772

> idcall <- idsummary$Call

> idcall[1:5]

[1] 0.9483794 0.9507803 0.9399760 0.9471789 0.9483794

> catable(idcall, c(0.9, 0.93, 0.95, 0.98, 0.99))

X<=0.9 0.9<X<=0.93 0.93<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 0 13.000 1186.000 1301.00 0 0

Prop 0 0.005 0.474 0.52 0 0
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> table(idcall < 0.93)

FALSE TRUE

2487 13

To produce a histogram of call rates, use hist(idcall)



Chapter 5

Genome-wide association
analysis

In the first parts of this section you will be guided through a GWA analysis of a
small data set. In the last part you will investigate a larger data set by yourself,
do a verification study and will answer the questions. All data sets used assume
a study in a relatively homogeneous population. Try to finish the first part in
the morning and the second part in the afternoon.

Though only few thousands of markers located at four small chromosomes
are used in the scan, we still going to call it Genome-Wide (GW), as the amount
of data we will use is approaches the amount to be expected in a real experiment.
However, because the regions are small, and the LD between SNPs is high, some
specific features (e.g. relatively high residual inflation, which occurs because
large proportion of SNPs are in LD with the really associated ones) are specific
features of this data set, which are not observed in true GWA studies.

Start R and load the GenABEL-package library by typing

> library(GenABEL)

and load the data which we will use in this section by

> data(ge03d2ex)

Investigate the objects loaded by the command

> ls()

[1] "ge03d2ex" "old"

The ge03d2ex is an object of the class gwaa.data:

> class(ge03d2ex)

[1] "gwaa.data"

attr(,"package")

[1] "GenABEL"

To check what are the names of variables in the phenotypic data frame, use

101
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> names(phdata(ge03d2ex))

[1] "id" "sex" "age" "dm2" "height" "weight" "diet" "bmi"

We can attach this data frame to the R search path by

> attach(phdata(ge03d2ex))

5.1 Data descriptives and first round of GWA
analysis

Let us investigate which traits are present in the loaded data frame and what are
the characteristics of the distribution by using the GenABEL-package function
descriptive.trait:

> descriptives.trait(ge03d2ex)

No Mean SD

id 136 NA NA

sex 136 0.529 0.501

age 136 49.069 12.926

dm2 136 0.632 0.484

height 135 169.440 9.814

weight 135 87.397 25.510

diet 136 0.059 0.236

bmi 135 30.301 8.082

You can see that the phenotypic frame contains data on 136 people; the
data on sex, age, height, weight, diet and body mass index (BMI) are available.
Our trait of interest is dm2 (type 2 diabetes). Note that every single piece
of information in this data set is simulated; however, we tried to keep our
simulations in a way we think the control of T2D may work.

You can produce a summary for cases and controls separately and compare
distributions of the traits by

> descriptives.trait(ge03d2ex, by=dm2)

No(by.var=0) Mean SD No(by.var=1) Mean SD Ptt Pkw

id 50 NA NA 86 NA NA NA NA

sex 50 0.420 0.499 86 0.593 0.494 0.053 0.052

age 50 47.038 13.971 86 50.250 12.206 0.179 0.205

dm2 50 NA NA 86 NA NA NA NA

height 49 167.671 8.586 86 170.448 10.362 0.097 0.141

weight 49 76.534 17.441 86 93.587 27.337 0.000 0.000

diet 50 0.060 0.240 86 0.058 0.235 0.965 0.965

bmi 49 27.304 6.463 86 32.008 8.441 0.000 0.001

Pexact

id NA

sex 0.074

age NA

dm2 NA
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height NA

weight NA

diet 1.000

bmi NA

Here, the by argument specifies the grouping variable. You can see that cases
and controls are different in weight, which is expected, as T2D is associated
with obesity.

Similarly, you can produce grand GW descriptives of the marker data by
using

> descriptives.marker(ge03d2ex)

$`Minor allele frequency distribution`
X<=0.01 0.01<X<=0.05 0.05<X<=0.1 0.1<X<=0.2 X>0.2

No 146.000 684.000 711.000 904.000 1555.000

Prop 0.036 0.171 0.178 0.226 0.389

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 46.000 71.000 125.000 275.000 4000

Prop 0.012 0.018 0.031 0.069 1

$`Distribution of proportion of successful genotypes (per person)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 1.000 0 0 135.000 0

Prop 0.007 0 0 0.993 0

$`Distribution of proportion of successful genotypes (per SNP)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 37.000 6.000 996.000 1177.000 1784.000

Prop 0.009 0.002 0.249 0.294 0.446

$`Mean heterozygosity for a SNP`
[1] 0.2582298

$`Standard deviation of the mean heterozygosity for a SNP`
[1] 0.1592255

$`Mean heterozygosity for a person`
[1] 0.2476507

$`Standard deviation of mean heterozygosity for a person`
[1] 0.04291038

It is of note that we can see inflation of the proportion of the tests for HWE at
a particular threshold, as compared to the expected. This may indicate poor
genotyping quality and/or genetic stratification.

We can test the GW marker characteristics in controls by

> descriptives.marker(ge03d2ex, ids=(dm2==0))



104 CHAPTER 5. GENOME-WIDE ASSOCIATION ANALYSIS

$`Minor allele frequency distribution`
X<=0.01 0.01<X<=0.05 0.05<X<=0.1 0.1<X<=0.2 X>0.2

No 233.000 676.000 671.000 898.000 1522.00

Prop 0.058 0.169 0.168 0.224 0.38

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 0 3.000 14.000 98.000 4000

Prop 0 0.001 0.003 0.024 1

$`Distribution of proportion of successful genotypes (per person)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 0 0 0 50 0

Prop 0 0 0 1 0

$`Distribution of proportion of successful genotypes (per SNP)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 37.000 49.000 1523.000 0 2391.000

Prop 0.009 0.012 0.381 0 0.598

$`Mean heterozygosity for a SNP`
[1] 0.2555009

$`Standard deviation of the mean heterozygosity for a SNP`
[1] 0.1618707

$`Mean heterozygosity for a person`
[1] 0.252572

$`Standard deviation of mean heterozygosity for a person`
[1] 0.04714886

Apparently, HWE distribution holds better in controls than in the total sample.
Let us check whether there are indications that deviation from HWE is due

to cases. At this stage we are only interested in the HWE distribution table,
and therefore will ask to report the distrbution for cases (dm2==1) and report
only table two:

> descriptives.marker(ge03d2ex, ids=(dm2==1))[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 45.000 79.00 136.000 268.000 4000

Prop 0.011 0.02 0.034 0.067 1

and for the controls

> descriptives.marker(ge03d2ex, ids=(dm2==0))[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 0 3.000 14.000 98.000 4000

Prop 0 0.001 0.003 0.024 1
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It seems that indeed excessive number of markers are out of HWE in cases. If no
laboratory procedure (e.g. DNA extraction, genotyping, calling) were done for
cases and controls separately, this may indicate possible genetic heterogeneity
specific for cases.

In essence, the ’descriptives.marker’ function uses the ’summary’ function
to generate the HW P -values distribution. It may be interesting to generate
this distribution using the ’summary’ function You do not need to do so, but this
example shows how you can generate summaries from underlying SNP-tables.
First, we need to compute summary SNP statistics by

> s <- summary( gtdata( ge03d2ex[(dm2==1), ] ) )

Note the you have produced the summary for the gtdata slot of ge03d2ex;
this is the slot which actually contain all genetic data in special compressed
format.

You can see the first 5 rows of this very long summary table by

> s[1:5, ]

Chromosome Position Strand A1 A2 NoMeasured CallRate Q.2 P.11

rs1646456 1 653 + C G 85 0.9883721 0.32941176 34

rs4435802 1 5291 + C A 86 1.0000000 0.09302326 70

rs946364 1 8533 - T C 84 0.9767442 0.24404762 46

rs299251 1 10737 + A G 85 0.9883721 0.03529412 79

rs2456488 1 11779 + G C 85 0.9883721 0.33529412 38

P.12 P.22 Pexact Fmax Plrt

rs1646456 46 5 0.05089075 -0.22493734 0.03233812

rs4435802 16 0 1.00000000 -0.10256410 0.19978917

rs946364 35 3 0.37413083 -0.12924909 0.21777250

rs299251 6 0 1.00000000 -0.03658537 0.63937447

rs2456488 37 10 0.81059718 0.02344356 0.82918345

Note that the column ’Pexact’ provides exact HWE test P -values we need. We
can extract these to a separate vector by

> pexcas <- s[, "Pexact"]

and do characterization of the cummulative distribution by

> catable(pexcas, c(0.001,0.01,0.05,0.1,0.5), cumulative=TRUE)

X<=0.001 X<=0.01 X<=0.05 X<=0.1 X<=0.5 all X

No 79.00 136.000 268.000 390.000 1359.00 4000

Prop 0.02 0.034 0.067 0.098 0.34 1

You can generate the distribution for controls in similar manner.
Let us first try do a GWA scan using the raw (before quality control)

data. We will use the score test, as implemented in the qtscore()1 function of
GenABEL-package for testing:

> an0 <- qtscore(dm2, ge03d2ex, trait="binomial")

1consider ’mlreg’ function if you want to run a true linear regression



106 CHAPTER 5. GENOME-WIDE ASSOCIATION ANALYSIS

The first argument used describes the model; here it is rather simple — the
affection status, dm2, is supposed to depend on SNP genotype only.

You can see what information is computed by this function by using

> an0

***** 'scan.gwaa' object *****

*** Produced with:

qtscore(formula = dm2, data = ge03d2ex, trait.type = "binomial")

*** Test used: binomial

*** no. IDs used: 136 ( id199 id287 id300 , ... )

*** Lambda: 1.033102

*** Results table contains 4000 rows and 9 columns

*** Output for 10 first rows is:

N effB se_effB chi2.1df P1df effAB effBB

rs1646456 135 0.9487666 5.0501959 0.0352941176 0.8509807 1.5558824 0.4831933

rs4435802 134 2.6822601 1.6765631 2.5595403237 0.1096305 2.5142857 NA

rs946364 134 0.6376645 0.4012104 2.5260391714 0.1119810 0.7277883 0.2869565

rs299251 135 0.5592122 0.5740215 0.9490674319 0.3299568 0.5569620 NA

rs2456488 135 0.8669860 1.5393112 0.3172278551 0.5732784 0.9736842 0.6907895

rs3712159 133 0.8282737 2.4803134 0.1115153279 0.7384255 0.5641026 Inf

rs4602970 136 1.5227297 2.2683336 0.4506421219 0.5020302 1.5131579 NA

rs175910 134 0.9949826 57.3970087 0.0003005055 0.9861693 0.5600000 4.0727273

rs1919938 136 0.9303079 3.5515057 0.0686164762 0.7933619 0.1160000 0.1958333

rs8892781 133 1.0953022 14.9055712 0.0053997133 0.9414220 1.0952381 NA

chi2.2df P2df

rs1646456 3.885667042 0.14329734

rs4435802 2.559540324 0.10963046

rs946364 3.020970009 0.22080286

rs299251 0.949067432 0.32995679

rs2456488 0.493411146 0.78137072

rs3712159 1.358996877 0.50687116

rs4602970 0.450642122 0.50203018

rs175910 5.012993241 0.08155345

rs1919938 6.001763944 0.04974318

rs8892781 0.005399713 0.94142198

...

___ Use 'results(object)' to get complete results table ___

Here, let us look at the ’Results table’. P1df, P2df and Pc1df are most inter-
esting; the first two are vectors of 1 and 2 d.f. P -values obtained in the GWA
analysis, the last one is 1 d.f. P -value corrected for inflation factor λ (which
is in the lambda object). effB corresponds to the (approximate) Odds Ratio
estimate for the SNP.

Let us see if there is evidence for the inflation of the test statistics; for that
let us obtain λ with

> lambda(an0)

$estimate

[1] 1.033102
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Figure 5.1: χ2−χ2 plot for a GWA scan. Black line of slope 1: expected under
no inflation; Red line: fitted slope.

$se

[1] 0.0005639231

The estimate of λ is 1.03, suggesting inflation of the test and some degree of
stratification. Though the value obtained seems to be small, it should be noted
that λ grows linearly with sample size, so for this small number of cases and
controls the value is worrisome.

The λ is computed by regression in a Q-Q plot. Both estimation of λ and
production of the χ2 − χ2 plot can be done using the estlambda function; this
was already done automatically when running qtscore function, but let us
repeat this manually:

> estlambda(an0[, "P1df"], plot=TRUE)

$estimate

[1] 1.033102

$se

[1] 0.0005639231

The corresponding χ2 − χ2 plot is shown in Figure 5.1.
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Figure 5.2: − log10(P -value) from the genome scan before QC procedure. Raw
analysis: darker circles; corrected analysis: lighter circles

The ’se’ produced by estlambda can not be used to test if inflation is signif-

icant and make conclusions about the presence of significant or insignificant

stratification.

We can also present the obtained results using the ”Manhatten plot”, where
the SNP genomic position is on the horizontal axis and − log10 of the P -value
is shown on the vertical axis:

> plot(an0)

The resulting plot is show in Figure 5.2. By default, − log10(P -value) of the
uncorrected 1 d.f. test are shown; see thehelp to figure out how this behaviour
can be changed.

We can also add the corrected P -values to the plot with

> add.plot(an0, df="Pc1df", col=c("lightblue", "lightgreen"))

You can see that the P -values corrected by genomic control are uniformly lower
than the P -values from ’raw’ analysis. This is to be expected as genomic control
simply divides the ’raw’ χ2 statistics by a constant λ for all SNPs.

You can also generate a descriptive table for the ”top”(as ranked by P -value)
results by
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> descriptives.scan(an0)

Summary for top 10 results, sorted by P1df

Chromosome Position Strand A1 A2 N effB se_effB chi2.1df

rs1719133 1 4495479 + T A 136 0.33729339 0.09282784 13.202591

rs2975760 3 10518480 + A T 134 3.80380024 1.05172986 13.080580

rs7418878 1 2808520 + A T 136 3.08123060 0.93431795 10.875745

rs5308595 3 10543128 - C G 133 3.98254950 1.21582875 10.729452

rs4804634 1 2807417 + C G 132 0.43411456 0.13400290 10.494949

rs3224311 2 6009769 + G C 135 3.15831710 0.98401491 10.301681

rs26325 3 10617781 + A C 135 0.09742793 0.03035964 10.298495

rs8835506 2 6010852 + A T 132 3.17720829 1.00274087 10.039543

rs3925525 2 6008501 + C G 135 2.98416931 0.96286458 9.605423

rs2521089 3 10487652 - T C 135 2.50239493 0.81179595 9.502064

P1df effAB effBB chi2.2df P2df Pc1df

rs1719133 0.0002795623 0.4004237 0.000000 14.729116 0.0006333052 0.0003504258

rs2975760 0.0002983731 3.4545455 10.000000 13.547345 0.0011434877 0.0003732694

rs7418878 0.0009743183 3.6051282 4.871795 12.181064 0.0022642036 0.0011762545

rs5308595 0.0010544366 3.3171429 Inf 10.766439 0.0045930101 0.0012699705

rs4804634 0.0011970132 0.5240642 0.173913 11.200767 0.0036964462 0.0014362332

rs3224311 0.0013290907 3.4151786 4.250000 11.658283 0.0029405999 0.0015897278

rs26325 0.0013313876 0.1097724 NA 10.298495 0.0013313876 0.0015923930

rs8835506 0.0015321522 3.4903846 4.125000 11.513206 0.0031618340 0.0018248521

rs3925525 0.0019400358 3.2380952 4.121212 10.782867 0.0045554384 0.0022944719

rs2521089 0.0020524092 2.5717703 4.772727 9.933387 0.0069661425 0.0024233145

or, equivalently, by ’summary(an0)’
Here you see top 10 results, sorted by P -value with 1 d.f. If you want to sort

by the corrected P -value, you can use descriptives.scan(an0, sort="Pc1df");
to see more than 10 (e.g. 25) top results, use descriptives.scan(an0, top=25).
You can combine all these options. Large part of results reports NA as effect
estimates and 9.99 as P -value for 2 d.f. test – for these markers only two out
of the three possible genotypes were observed, and consequently the 2 d.f. test
could not be performed.

Now let us apply the qtscore() function with times argument, which tells
it to compute empirical GW (or experiment-wise) significance

> an0.e <- qtscore(dm2, ge03d2ex, times=200, quiet=TRUE)

|

| | 0%

|

|======================================================================| 100%

(you may skip the ’quiet=TRUE’ argument, then you will see progress)
Now let us generate the summary of the results

> descriptives.scan(an0.e, sort="Pc1df")

Summary for top 10 results, sorted by Pc1df

Chromosome Position Strand A1 A2 N effB se_effB chi2.1df

rs1719133 1 4495479 + T A 136 -0.2652064 0.07298850 13.202591
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rs2975760 3 10518480 + A T 134 0.2340655 0.06471782 13.080580

rs7418878 1 2808520 + A T 136 0.2089098 0.06334746 10.875745

rs5308595 3 10543128 - C G 133 0.2445516 0.07465893 10.729452

rs4804634 1 2807417 + C G 132 -0.2050449 0.06329344 10.494949

rs3224311 2 6009769 + G C 135 0.2133633 0.06647611 10.301681

rs26325 3 10617781 + A C 135 -0.4875367 0.15192190 10.298495

rs8835506 2 6010852 + A T 132 0.2112000 0.06665565 10.039543

rs3925525 2 6008501 + C G 135 0.2057095 0.06637371 9.605423

rs2521089 3 10487652 - T C 135 0.1775016 0.05758287 9.502064

P1df Pc1df effAB effBB chi2.2df P2df

rs1719133 0.460 0.525 -0.2080882 -0.7375000 14.729116 NA

rs2975760 0.470 0.555 0.2755102 0.4090909 13.547345 NA

rs7418878 0.835 0.900 0.2807405 0.3268398 12.181064 NA

rs5308595 0.855 0.915 0.2564832 0.4623656 10.766439 NA

rs4804634 0.900 0.945 -0.1193830 -0.3845238 11.200767 NA

rs3224311 0.920 0.965 0.2778634 0.3151515 11.658283 NA

rs26325 0.930 0.965 -0.4875367 NA 10.298495 NA

rs8835506 0.955 0.980 0.2796221 0.3076923 11.513206 NA

rs3925525 0.980 0.990 0.2660834 0.3074627 10.782867 NA

rs2521089 0.980 0.990 0.2254633 0.3396072 9.933387 NA

Experimental-wise significance is computed by an empirical procedure, thus
we consider P -values ≤ 0.05 to be GW-significant. However, none of the SNPs
hits GW significance. If, actually, any did pass the threshold, we could not
trust the results, because the distribution of the HWE test and presence of
inflation factor for the association test statistics suggest that the data may
contain multiple errors (indeed they do). Therefore before association analysis
we need to do rigorous Quality Control (QC).

Note that at a certain SNP, the corrected P -values become equal to 1 – at
this point the order in the list is arbitrary because sorting could not be done.

Summary:

• The descriptives family of functions was developed to facilitate the pro-
duction of tables which can be directly used in a manuscript — it is possi-
ble to save the output as a file, which can be open by Excel or Word. See
e.g. help(descriptives.trait) for details.

• The inflation of test statistics compared to null (1 d.f.) may be estimated
with estlambda function.

5.2 Genetic data QC

The major genetic data QC function of GenABEL-package is check.marker().
We will now use that to perform our data QC; the output is rather self-explaining.
Because of possible genetic heterogeneity of the study data it is a good idea to
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skip Hardy-Weinberg checks in the first round of QC. This can be achieved by
setting HWE P -value selection threshold to zero (p.level=0):

> qc1 <- check.marker(ge03d2ex, p.level=0)

Excluding people/markers with extremely low call rate...

4000 markers and 136 people in total

0 people excluded because of call rate < 0.1

6 markers excluded because of call rate < 0.1

Passed: 3994 markers and 136 people

Running sex chromosome checks...

197 heterozygous X-linked male genotypes found

1 X-linked markers are likely to be autosomal (odds > 1000 )

2 male are likely to be female (odds > 1000 )

0 female are likely to be male (odds > 1000 )

0 people have intermediate X-chromosome inbreeding (0.5 > F > 0.5)

If these people/markers are removed, 0 heterozygous male genotypes are left

Passed: 3993 markers and 134 people

no X/Y/mtDNA-errors to fix

RUN 1

3993 markers and 134 people in total

304 (7.613323%) markers excluded as having low (<1.865672%) minor allele frequency

36 (0.9015778%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (P <0)

1 (0.7462687%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2747262 (s.e. 0.03721277)

3 (2.238806%) people excluded because too high autosomal heterozygosity (FDR <1%)

Excluded people had HET >= 0.4856887

Mean IBS is 0.7704304 (s.e. 0.02151671), as based on 2000 autosomal markers

2 (1.492537%) people excluded because of too high IBS (>=0.95)

In total, 3653 (91.4851%) markers passed all criteria

In total, 128 (95.52239%) people passed all criteria

RUN 2

3653 markers and 128 people in total

80 (2.189981%) markers excluded as having low (<1.953125%) minor allele frequency

0 (0%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (P <0)

0 (0%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2748341 (s.e. 0.01695461)

0 people excluded because too high autosomal heterozygosity (FDR <1%)

Mean IBS is 0.7710095 (s.e. 0.01769682), as based on 2000 autosomal markers

0 (0%) people excluded because of too high IBS (>=0.95)

In total, 3573 (97.81002%) markers passed all criteria

In total, 128 (100%) people passed all criteria

RUN 3
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3573 markers and 128 people in total

0 (0%) markers excluded as having low (<1.953125%) minor allele frequency

0 (0%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (P <0)

0 (0%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2748341 (s.e. 0.01695461)

0 people excluded because too high autosomal heterozygosity (FDR <1%)

Mean IBS is 0.7699498 (s.e. 0.01725735), as based on 2000 autosomal markers

0 (0%) people excluded because of too high IBS (>=0.95)

In total, 3573 (100%) markers passed all criteria

In total, 128 (100%) people passed all criteria

Note that normally you will NEVER run this simple form of the QC function –
you should always provide a number of thresholds specific to the platform you
used for genotyping. See help to check.marker() for detailed list of arguments.
The default values used by the function are rather relaxed compared to the
thresholds routinely used nowadays with most of the platforms.

The computation of all pairwise proportion of alleles identical-by-state (IBS)

by ibs() function, which is also called by check.marker() may take quite some

time, which is proportional to the square of the number of subjects. This is

not a problem with the small number of people we use for this example or

when modern computers are used. However, the computers in the computer

room are very old. Therefore be prepared to wait for long time when you

will do a self-exercise with 1,000 people.

From the output you can see that QC starts with checking the data for SNPs
and people with extremely low call rate. Six markers are excluded from further
analysis due to very low call rate. Next, X-chromosomal errors are identified.
The function finds out that all errors (heterozygous male X-genotypes) are due
to two people with wrong sex assigned and one marker, which looks like an
autosomal one. This actually could be a marker from the pseudoautosomal
region, which should have been arranged as a separate ”autosome”. Nine people
are found to have intermediate inbreeding at the X-chromosome and are also
excluded from analysis.

Then, the procedure finds the markers with low call rate (≤ 0.95 by default)
across people, markers with low MAF (by default, low MAF is defined as less
than a few copies of the rare allele, see help for details); people with low call
rate (default value: ≤ 0.95) across SNPs, people with extreme heterozygosity
(at FDR 0.01) and those who have GW IBS ≥ 0.95. These default parameters
may be changed if you wish (consult the help).

Because some of the people fail to pass the tests, the data set is not guar-
anteed to be really ”clean” after single iteration, e.g. some marker may not
pass the call threshold after we exclude few informative (but apparently having
low quality) samples. Therefore the QC is repeated iteratively until no further
errors are found.

You can generate a short summary of the QC by marker and by person
through
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> summary(qc1)

$`Per-SNP fails statistics`
NoCall NoMAF NoHWE Redundant Xsnpfail

NoCall 42 0 0 0 0

NoMAF NA 384 0 0 0

NoHWE NA NA 0 0 0

Redundant NA NA NA 0 0

Xsnpfail NA NA NA NA 1

$`Per-person fails statistics`
IDnoCall HetFail IBSFail isfemale ismale isXXY otherSexErr

IDnoCall 1 0 0 0 0 0 0

HetFail NA 3 0 0 0 0 0

IBSFail NA NA 2 0 0 0 0

isfemale NA NA NA 2 0 0 0

ismale NA NA NA NA 0 0 0

isXXY NA NA NA NA NA 0 0

otherSexErr NA NA NA NA NA NA 0

Note that the original data, ge03d2ex, are not modified during the procedure;
rather, check.markers() generate a list of markers and people which pass or
do not pass certain QC criteria. The objects returned by check.markers() are:

> names(qc1)

[1] "nofreq" "nocall" "nohwe" "Xmrkfail" "hetfail"

[6] "idnocall" "ibsfail" "isfemale" "ismale" "otherSexErr"

[11] "snpok" "idok" "call"

The element idok provides the list of people who passed all QC criteria,
and snpok provides the list of SNPs which passed all criteria. You can easily
generate a new data set, which will consist only of these people and markers by

> data1 <- ge03d2ex[qc1$idok, qc1$snpok]

If there are any residual sporadic X-errors (male heterozygosity), these can
(and should!) be fixed (set to NA) by

> data1 <- Xfix(data1)

no X/Y/mtDNA-errors to fix

Applying this function does not make any difference for the example data set,
but you will need to use it for the bigger data set.

At this point, we are ready to work with the new, cleaned, data set data1.
However, if we try

> length(dm2)

[1] 136

we can see that the original phenotypic data are attached to the search path
(there are only 128 people left in the ’clean’ data set). Therefore we need to
detach the data by
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> detach(phdata(ge03d2ex))

and attach new data by

> attach(phdata(data1))

At this stage, let us check if the first round of QC improves the fit of genetic
data to HWE, which may have been violated due to by genotyping errors which
we hopefully (at least partly!) eliminated:

> descriptives.marker(data1)[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 44.000 66.000 117.000 239.000 3573

Prop 0.012 0.018 0.033 0.067 1

> descriptives.marker(data1[dm2==1, ])[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 46.000 70.00 127.000 228.000 3573

Prop 0.013 0.02 0.036 0.064 1

> descriptives.marker(data1[dm2==0, ])[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 0 0 7.000 91.000 3573

Prop 0 0 0.002 0.025 1

You can see that the fit to HWE improved, but cases are still have excess number
of markers out of HWE. This may be due to genetic sub-structure.

5.3 Finding genetic sub-structure

Now, we are ready for the second round of QC – detection of genetic outliers
which may contaminate our results. We will detect genetic outliers using a
technique, which resembles the one suggested by Price at al.

As the first step, we will compute a matrix of genomic kinship between all
pairs of individuals, using only autosomal2 markers by

> data1.gkin <- ibs(data1[, autosomal(data1)], weight="freq")

This step may take few minutes on large data sets or when using old com-

puters!

You can see the 5× 5 upper left sub-matrix by

2the list of autosomal markers contained in data is returned by the autosomal(data)

function
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> data1.gkin[1:5, 1:5]

id199 id300 id403 id415 id666

id199 0.494427766 3255.00000000 3253.00000000 3241.00000000 3257.0000000

id300 -0.011754266 0.49360296 3261.00000000 3250.00000000 3264.0000000

id403 -0.012253378 -0.01262949 0.50541775 3247.00000000 3262.0000000

id415 -0.001812109 0.01388179 -0.02515438 0.53008236 3251.0000000

id666 -0.018745051 -0.02127344 0.02083723 -0.02014175 0.5306584

The numbers below the diagonal show the genomic estimate of kinship (aka
’genomic kinship’ or ’genome-wide IBD’), the numbers on the diagonal corre-
spond to 0.5 plus the genomic homozigosity, and the numbers above the diagonal
tell how many SNPs were typed successfully for both subjects (thus the IBD
estimate is derived using this number of SNPs).

Second, we transform this matrix to a distance matrix using standard R

command

> data1.dist <- as.dist(0.5-data1.gkin)

Finally, we perform Classical Multidimensional Scaling by

> data1.mds <- cmdscale(data1.dist)

By default, the first two principal components are computed and returned.

This may take few minutes on large data sets or when using old computers!

We can present the results graphically by

> plot(data1.mds)

The resulting plot is shown in Figure 5.3. Each point on the plot corresponds
to a person, and the 2D distances between points were fitted to be as close as
possible to those presented in the original IBS matrix. You can see that study
subjects clearly cluster in two groups.

You can identify the points belonging to clusters by

> km <- kmeans(data1.mds, centers=2, nstart=1000)

> cl1 <- names(which(km$cluster==1))

> cl2 <- names(which(km$cluster==2))

> if (length(cl1) > length(cl2)) {x<-cl2; cl2<-cl1; cl1<-x}

> cl1

[1] "id2097" "id6954" "id2136" "id858"

> cl2

[1] "id199" "id300" "id403" "id415" "id666" "id689" "id765" "id830"

[9] "id908" "id980" "id994" "id1193" "id1423" "id1505" "id1737" "id1827"

[17] "id1841" "id2068" "id2094" "id2151" "id2317" "id2618" "id2842" "id2894"

[25] "id2985" "id3354" "id3368" "id3641" "id3831" "id3983" "id4097" "id4328"

[33] "id4380" "id4395" "id4512" "id4552" "id4710" "id4717" "id4883" "id4904"
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Figure 5.3: Mapping samples to the space of the first two Principle Components
resulting from analysis of genomic kinship. Red dots identify genetic outliers.

[41] "id4934" "id4961" "id5014" "id5078" "id5274" "id5275" "id5454" "id5853"

[49] "id5926" "id5969" "id6237" "id6278" "id6352" "id6501" "id6554" "id6663"

[57] "id6723" "id7499" "id7514" "id7541" "id7598" "id7623" "id7949" "id8059"

[65] "id8128" "id8281" "id8370" "id8400" "id8433" "id8772" "id8880" "id8890"

[73] "id8957" "id8996" "id9082" "id9901" "id9930" "id1857" "id2528" "id4862"

[81] "id9184" "id5677" "id6407" "id5472" "id2135" "id8545" "id4333" "id1670"

[89] "id1536" "id6917" "id6424" "id3917" "id9628" "id9635" "id4729" "id5190"

[97] "id6399" "id6062" "id620" "id1116" "id6486" "id41" "id677" "id4947"

[105] "id9749" "id6428" "id7488" "id5949" "id2924" "id5783" "id4096" "id903"

[113] "id9049" "id185" "id1002" "id362" "id9014" "id5044" "id2749" "id2286"

[121] "id4743" "id4185" "id8330" "id6934"

Four outliers are shown in the smaller cluster.

Now you will need to use the BIGGER cluster for to select study subjects.

Whether this will be cl1 or cl2 in you case, is totally random.

We can form a data set which is free from outliers by using only people from
the bigger cluster:

> data2 <- data1[cl2, ]
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After we dropped the outliers, we need to repeat QC using check.markers().
At this stage, we want to allow for HWE checks (we will use only controls and
exclude markers with FDR ≤ 0.2):

> qc2 <- check.marker(data2, hweids=(phdata(data2)$dm2==0), fdr=0.2)

Excluding people/markers with extremely low call rate...

3573 markers and 124 people in total

0 people excluded because of call rate < 0.1

0 markers excluded because of call rate < 0.1

Passed: 3573 markers and 124 people

Running sex chromosome checks...

0 heterozygous X-linked male genotypes found

0 X-linked markers are likely to be autosomal (odds > 1000 )

0 male are likely to be female (odds > 1000 )

0 female are likely to be male (odds > 1000 )

0 people have intermediate X-chromosome inbreeding (0.5 > F > 0.5)

If these people/markers are removed, 0 heterozygous male genotypes are left

Passed: 3573 markers and 124 people

no X/Y/mtDNA-errors to fix

RUN 1

3573 markers and 124 people in total

40 (1.119507%) markers excluded as having low (<2.016129%) minor allele frequency

0 (0%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (FDR <0.2)

0 (0%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2780246 (s.e. 0.01642372)

0 people excluded because too high autosomal heterozygosity (FDR <1%)

Mean IBS is 0.7714255 (s.e. 0.0124453), as based on 2000 autosomal markers

0 (0%) people excluded because of too high IBS (>=0.95)

In total, 3533 (98.88049%) markers passed all criteria

In total, 124 (100%) people passed all criteria

RUN 2

3533 markers and 124 people in total

0 (0%) markers excluded as having low (<2.016129%) minor allele frequency

0 (0%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (FDR <0.2)

0 (0%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2780246 (s.e. 0.01642372)

0 people excluded because too high autosomal heterozygosity (FDR <1%)

Mean IBS is 0.7684757 (s.e. 0.01265441), as based on 2000 autosomal markers

0 (0%) people excluded because of too high IBS (>=0.95)

In total, 3533 (100%) markers passed all criteria

In total, 124 (100%) people passed all criteria

> summary(qc2)
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$`Per-SNP fails statistics`
NoCall NoMAF NoHWE Redundant Xsnpfail

NoCall 0 0 0 0 0

NoMAF NA 40 0 0 0

NoHWE NA NA 0 0 0

Redundant NA NA NA 0 0

Xsnpfail NA NA NA NA 0

$`Per-person fails statistics`
IDnoCall HetFail IBSFail isfemale ismale isXXY otherSexErr

IDnoCall 0 0 0 0 0 0 0

HetFail NA 0 0 0 0 0 0

IBSFail NA NA 0 0 0 0 0

isfemale NA NA NA 0 0 0 0

ismale NA NA NA NA 0 0 0

isXXY NA NA NA NA NA 0 0

otherSexErr NA NA NA NA NA NA 0

If the procedure did not run, check the previous Note.

Indeed, in the updated data set several markers do not pass our QC criteria
and we need to drop a few markers. This is done by

> data2 <- data2[qc2$idok, qc2$snpok]

This is going to be our final analysis data set, therefore let us attach the phe-
notypic data to the search path, so we do not need to type phdata(data2)$...

to access dm2 status or other variables:

> detach(phdata(data1))

> attach(phdata(data2))

> ####

> #ge03d2ex.clean <- data2

> #save(ge03d2ex.clean, file="ge03d2ex.clean.RData")

> ####

Before proceeding to GWA, let us check if complete QC improved the fit of
genetic data to HWE:

> descriptives.marker(data2)[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 1 2.000 2e+01 101.000 3533

Prop 0 0.001 6e-03 0.029 1

> descriptives.marker(data2[phdata(data2)$dm2==1, ])[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 0 1 17.000 79.000 3533

Prop 0 0 0.005 0.022 1
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> descriptives.marker(data2[phdata(data2)$dm2==0, ])[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 0 0 7.000 91.000 3533

Prop 0 0 0.002 0.026 1

You can see that now there is no excessive number of SNPs out of HWE in the
sample (total, or cases, or controls)

5.4 GWA association analysis

Let us start again with descriptives of the phenotypic and marker data

> descriptives.trait(data2, by=dm2)

No(by.var=0) Mean SD No(by.var=1) Mean SD Ptt Pkw

id 47 NA NA 77 NA NA NA NA

sex 47 0.426 0.500 77 0.597 0.494 0.065 0.064

age 47 45.752 13.313 77 50.593 12.465 0.047 0.062

dm2 47 NA NA 77 NA NA NA NA

height 46 167.911 8.689 77 170.423 10.646 0.157 0.213

weight 46 77.015 17.528 77 94.160 26.963 0.000 0.000

diet 47 0.064 0.247 77 0.065 0.248 0.981 0.981

bmi 46 27.424 6.598 77 32.235 8.335 0.001 0.001

Pexact

id NA

sex 0.067

age NA

dm2 NA

height NA

weight NA

diet 1.000

bmi NA

You can see that the relation to weight is maintained in this smaller, but
hopefully cleaner, data set; moreover, the relation to age becomes borderline
significant.

If you check descriptives of markers (only HWE part shown)

> descriptives.marker(data2)[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 1 2.000 2e+01 101.000 3533

Prop 0 0.001 6e-03 0.029 1

you can see that the problems with HWE are apparently fixed; we may guess
that these were caused by Wahlund’s effect.

Run the score test on the cleaned data by

> data2.qt <- qtscore(dm2, data2, trait="binomial")
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Figure 5.4: − log10(Corrected P -value) from the genome scan after the QC pro-
cedure.

and check lambda

> lambda(data2.qt)

$estimate

[1] 1.036958

$se

[1] 0.0007178

there is still some inflation, which is explained by the fact that we investigate
only a few short chromosomes with high LD and few causative variants.

Produce the association analysis plot by

> plot(data2.qt, df="Pc1df")

(Figure 5.4).
Produce the scan summary by

> descriptives.scan(data2.qt, sort="Pc1df")

Summary for top 10 results, sorted by Pc1df

Chromosome Position Strand A1 A2 N effB se_effB chi2.1df

rs1719133 1 4495479 + T A 124 0.3167801 0.08614528 13.522368



5.4. GWA ASSOCIATION ANALYSIS 121

rs4804634 1 2807417 + C G 121 0.4119844 0.12480696 10.896423

rs8835506 2 6010852 + A T 121 3.5378209 1.08954331 10.543448

rs4534929 1 4474374 + C G 123 0.4547151 0.14160410 10.311626

rs1013473 1 4487262 + A T 124 2.7839368 0.86860745 10.272393

rs3925525 2 6008501 + C G 124 3.2807631 1.03380675 10.070964

rs3224311 2 6009769 + G C 124 3.2807631 1.03380675 10.070964

rs2975760 3 10518480 + A T 123 3.1802120 1.00916993 9.930784

rs2521089 3 10487652 - T C 123 2.7298775 0.87761175 9.675679

rs1048031 1 4485591 + G T 122 0.4510793 0.14548378 9.613391

P1df effAB effBB chi2.2df P2df Pc1df

rs1719133 0.0002357368 0.3740771 0.0000000 14.677906 0.0006497303 0.0003048399

rs4804634 0.0009635013 0.6315789 0.1739130 12.375590 0.0020543516 0.0011885463

rs8835506 0.0011660066 4.0185185 4.0185185 12.605556 0.0018312105 0.0014292471

rs4534929 0.0013219476 0.4830918 0.1739130 10.510272 0.0052206352 0.0016136479

rs1013473 0.0013503553 3.0495868 5.8441558 10.926296 0.0042401869 0.0016471605

rs3925525 0.0015062424 3.6923077 4.0000000 11.765985 0.0027864347 0.0018306610

rs3224311 0.0015062424 3.6923077 4.0000000 11.765985 0.0027864347 0.0018306610

rs2975760 0.0016253728 3.0000000 8.0000000 10.172522 0.0061810866 0.0019704699

rs2521089 0.0018672326 3.0147059 5.0000000 10.543296 0.0051351403 0.0022533033

rs1048031 0.0019316360 0.4844720 0.1714286 9.965696 0.0068545128 0.0023284084

Comparison with the top 10 from the scan before QC shows that results
changed substantially with only few markers overlapping.

You can see similar results when assessing empirical GW significance:

> data2.qte <- qtscore(dm2,

+ data2, times=200, quiet=TRUE, trait="binomial")

|

| | 0%

|

|======================================================================| 100%

> descriptives.scan(data2.qte, sort="Pc1df")

Summary for top 10 results, sorted by Pc1df

Chromosome Position Strand A1 A2 N effB se_effB chi2.1df

rs1719133 1 4495479 + T A 124 0.3167801 0.08614528 13.522368

rs4804634 1 2807417 + C G 121 0.4119844 0.12480696 10.896423

rs8835506 2 6010852 + A T 121 3.5378209 1.08954331 10.543448

rs4534929 1 4474374 + C G 123 0.4547151 0.14160410 10.311626

rs1013473 1 4487262 + A T 124 2.7839368 0.86860745 10.272393

rs3925525 2 6008501 + C G 124 3.2807631 1.03380675 10.070964

rs3224311 2 6009769 + G C 124 3.2807631 1.03380675 10.070964

rs2975760 3 10518480 + A T 123 3.1802120 1.00916993 9.930784

rs1048031 1 4485591 + G T 122 0.4510793 0.14548378 9.613391

rs2521089 3 10487652 - T C 123 2.7298775 0.87761175 9.675679

P1df Pc1df effAB effBB chi2.2df P2df

rs1719133 0.345 0.425 0.3740771 0.0000000 14.677906 0.465

rs4804634 0.800 0.865 0.6315789 0.1739130 12.375590 0.945

rs8835506 0.860 0.940 4.0185185 4.0185185 12.605556 0.910
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rs4534929 0.910 0.955 0.4830918 0.1739130 10.510272 1.000

rs1013473 0.910 0.955 3.0495868 5.8441558 10.926296 0.995

rs3925525 0.950 0.960 3.6923077 4.0000000 11.765985 0.975

rs3224311 0.950 0.960 3.6923077 4.0000000 11.765985 0.975

rs2975760 0.955 0.960 3.0000000 8.0000000 10.172522 1.000

rs1048031 0.960 0.980 0.4844720 0.1714286 9.965696 1.000

rs2521089 0.960 0.980 3.0147059 5.0000000 10.543296 1.000

Again, none of the SNPs hits GW 5% significance. Still, you can see that
after QC the top markers achieve somewhat “better” significance.

In the last part, we will do several adjusted and stratified analyses. Only
empirical P -values will be estimated to make the story shorter. To adjust for
sex and age, we can

> data2.qtae <- qtscore(dm2~sex+age,

+ data2, times=200, quiet=TRUE, trait="binomial")

|

| | 0%

|

|======================================================================| 100%

> descriptives.scan(data2.qtae)

Summary for top 10 results, sorted by P1df

Chromosome Position Strand A1 A2 N effB se_effB chi2.1df

rs1719133 1 4495479 + T A 124 0.5057834 0.1386464 13.307976

rs2398949 1 4828375 - A C 122 0.4163599 0.1253217 11.037861

rs4804634 1 2807417 + C G 121 0.5811444 0.1769232 10.789433

rs7522488 3 11689797 - G A 123 1.8718644 0.5707656 10.755565

rs3925525 2 6008501 + C G 124 2.0202686 0.6406356 9.944799

rs3224311 2 6009769 + G C 124 2.0202686 0.6406356 9.944799

rs8835506 2 6010852 + A T 121 2.0575431 0.6501899 10.014228

rs1037237 3 11690145 + C G 124 1.8144282 0.5735660 10.007206

rs1013473 1 4487262 + A T 124 1.8148181 0.5864622 9.576043

rs1048031 1 4485591 + G T 122 0.6128584 0.1993057 9.455418

P1df Pc1df effAB effBB chi2.2df P2df

rs1719133 0.470 0.595 0.4853657 0.2242383 13.367455 0.890

rs2398949 0.845 0.915 0.3110042 2.8197228 16.111010 0.355

rs4804634 0.870 0.925 0.7420448 0.3389525 12.112794 0.990

rs7522488 0.875 0.930 1.3995557 3.1160361 11.256933 0.995

rs3925525 0.940 1.000 2.3028971 2.2451502 11.988964 0.990

rs3224311 0.940 1.000 2.3028971 2.2451502 11.988964 0.990

rs8835506 0.940 0.995 2.3758119 2.2365358 12.302956 0.990

rs1037237 0.940 0.995 1.3400938 2.9836475 10.674189 1.000

rs1013473 0.980 1.000 1.8390955 2.8613308 9.893424 1.000

rs1048031 0.995 1.000 0.6453091 0.3417444 9.840158 1.000

You can see that there is little difference between adjusted and unadjusted
analysis, but this is not always the case; adjustment may make your study much
more powerful when covariates explain a large proportion of environmental trait
variation.
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Finally, let us do stratified (by BMI) analysis. We will contracts obese
(BMI ≥ 30) cases to all controls.

> data2.qtse <- qtscore(dm2~sex+age,

+ data2, ids=((bmi>30 & dm2==1) | dm2==0),

+ times=200, quiet=TRUE, trait="binomial")

|

| | 0%

|

|======================================================================| 100%

> descriptives.scan(data2.qtse, sort="Pc1df")

Summary for top 10 results, sorted by Pc1df

Chromosome Position Strand A1 A2 N effB se_effB chi2.1df

rs7522488 3 11689797 - G A 88 1.7561171 0.5560485 9.97428216

rs1037237 3 11690145 + C G 88 1.7561171 0.5560485 9.97428216

rs9630764 1 3897972 + T A 88 1.7595598 0.5615384 9.81858908

rs1891586 1 2297398 - C T 88 0.5340528 0.1733886 9.48696549

rs3215698 X 13559835 - T A 88 0.4806715 0.1571512 9.35537756

rs1646456 1 653 + C G 87 0.8853536 1.3981894 0.40096049

rs4435802 1 5291 + C A 86 1.7961795 1.1926370 2.26820816

rs946364 1 8533 - T C 86 0.7682453 0.5994013 1.64272311

rs299251 1 10737 + A G 88 0.6819981 0.8106956 0.70770257

rs2456488 1 11779 + G C 87 0.9613536 4.4351609 0.04698374

P1df Pc1df effAB effBB chi2.2df P2df

rs7522488 0.910 0.925 1.3215457 3.1245402 11.2990479 0.96

rs1037237 0.910 0.925 1.3215457 3.1245402 11.2990479 0.96

rs9630764 0.925 0.940 1.9346110 3.3161548 9.8316163 1.00

rs1891586 0.970 0.975 0.5836292 0.3065275 9.5182135 1.00

rs3215698 0.975 0.985 0.3406693 0.2701336 9.9417133 1.00

rs1646456 1.000 1.000 1.1455730 0.6013127 2.2015462 1.00

rs4435802 1.000 1.000 1.7919867 NA 2.2682082 1.00

rs946364 1.000 1.000 0.8791195 0.4696496 2.1881175 1.00

rs299251 1.000 1.000 0.6835419 NA 0.7077026 1.00

rs2456488 1.000 1.000 1.0713560 0.8544801 0.3319582 1.00

Again, nothing interesting at the GW significance level. If we would have had
found something, naturally, we would not have known if we mapped a T2D or
obesity gene (or a gene for obesity in presence of T2D, or the one for T2D in
presence of obesity).

Let us save the ’data1’, ’data1.gkin’, ’data2.qt’ and ’cl1’ objects now

> save(data1, cl1, data1.gkin, data2.qt, file="data1.RData")

These data will be used later in section 7, ”GWA in presence of genetic strat-
ification: practice”, in which we will perform GWA using different methods to
account for stratification, and will compare the results with these obtaining by
removing outliers (’data2.qt’).

Let us also save the cleaned ’data2’ object, which will be later used in section
10 (”Meta-analysis of GWA scans”):
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> save(data2, file="data2.RData")

At this point, you acquired the knowledge necessary for the self-exercise.
Please close R by q() command and proceed to the next section.

5.5 Genome-wide association analysis exercise

During the exercise, you will work with a larger data set (approximately 1,000
people and 7,000+ SNPs). You are to do the complete three-round QC; perform
GWA analysis with dm2 as the outcome of interest and identify 10 SNPs which
you would like to take to the stage 2 (replication) scan. You will do replication
analysis using a confirmatory data set. If you did everything right, the SNPs
which you identified as significant or replicated will be located in known T2D
genes.

Please keep in mind that the data are simulated, and do not take your
findings too seriously!

Start R by going to ”Start -> Programs -> R -> R-?.?.?”. Load the GenABEL-package
library by

> library(GenABEL)

The two data sets we will use in this exercise are part of the GenABEL-package
distribution. The first one (the ”discovery” set) can be loaded by

> data(ge03d2)

Please move along the lines detailed in the guided exercise and try to answer
following questions:
Ex. 1 — How many cases and controls are present in the original data set?

Ex. 2 — How many markers are present in the original data set?

Ex. 3 — Is there evidence for inflation of the HWE test statistics?

Ex. 4 — Analyse empirical GW significance. How many SNPs pass the genome-
wide significance threshold, after correction for the inflation factor? Write down
the names of these SNPs for further comparison.

Ex. 5 — Perform first steps of the genetic data QC.

Ex. 6 — How many males are ’genetically’ females?

Ex. 7 — How many females are ’genetically’ males?

Ex. 8 — How many people are quessed to have ’XXY’ genotype?

Ex. 9 — How many sporadic X errors do you still observe even when the
female male and non-X X-markers are removed? (do not forget to Xfix(s)

these

Ex. 10 — How many ”twin” DNAs did you discover?

Ex. 11 — Perform second step of QC.

Ex. 12 — How many genetic outliers did you discover?
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Ex. 13 — How many cases and controls are presented in the data after QC?

Ex. 14 — How many markers are presented in the data after QC?

Ex. 15 — Is there evidence for inflation of the HWE test staistics?

Ex. 16 — Perform GWA analysis of the cleaned data, using asimptotic test
and plot the results. What is the estimate of λ for the 1 d.f. test?

Ex. 17 — Analyse empirical GW significance. How many SNPs pass genome-
wide significance threshold, after correction for the inflation factor?

Ex. 18 — Do these SNPs overlap much with the ones ranked at the top before
the QC? If not, what could be the reason?

Ex. 19 — Select 10 SNPs which you would like to follow-up. Say, you’ve se-
lected rs1646456, rs7950586, rs4785242, rs4435802, rs2847446, rs946364, rs299251,
rs2456488, rs1292700, and rs8183220. Make a vector of these SNPs with

> #vec12<-c("rs1646456", "rs7950586", "rs4785242", "rs4435802", "rs2847446",

> # "rs946364", "rs299251", "rs2456488", "rs1292700", "rs8183220")

Load the stage 2 (replicaton) data set by

> #data(ge03d2c)

and select the subset of SNPs you need by

> #confdat <- ge03d2c[, vec12]

Analyse the confdat for association with dm2.

Ex. 20 — Given the two-stage design, and applying the puristic criteria spec-
ified in the lecture, for how many SNPs you can claim a significant finding?

Ex. 21 — Using the same criteria, for how many SNPs you can claim a repli-
cated finding?

Ex. 22 — If time permits, characterise the mode of inheritance of the signifi-
cant SNPs. You can convert data from GenABEL-package format to the format
used by dgc.genetics and genetics libraries by using as.genotype() func-
tion. Consult the help for details. Please do not attempt to convert more than
a few dozen SNPs: the format of genetics is not compressed, which means
conversion may take long and your low-memory computer may even crash if
you attempt to convert the whole data set.

Ex. 23 — If time permits, do analysis with adjustment for covariates and
stratified analysis.

Ex. 24 — If time permits, try to do first round of QC allowing for HWE
checks (assume FDR of 0.1 for total sample). In this case, can you still detect
stratification in the ”cleaned” data?

5.6 Answers to exercises
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Answer (Ex. 1) — :

> table(phdata(ge03d2)$dm2)

0 1

487 463

Answer (Ex. 2) — :

> nsnps(ge03d2)

[1] 7589

Answer (Ex. 3) — Yes:

> descriptives.marker(ge03d2)[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 331.000 367.000 479.000 807.000 7589

Prop 0.044 0.048 0.063 0.106 1

Answer (Ex. 4) — :

> res0 <- qtscore(dm2, data=ge03d2, times=200,

+ quiet=TRUE, trait="binomial")

|

| | 0%

|

|======================================================================| 100%

> ### something funny is going on here

> ### disabeling next line

> #lambda(res0)

> ds <- descriptives.scan(res0)

Summary for top 10 results, sorted by P1df

> ds

Chromosome Position Strand A1 A2 N effB se_effB chi2.1df P1df Pc1df

rs1646456 1 653 + C G 938 NaN NaN NaN NA NA

rs7950586 1 849 - T A 938 NaN NaN NaN NA NA

rs4785242 1 1766 - T C 936 NaN NaN NaN NA NA

rs4435802 1 5291 + C A 943 NaN NaN NaN NA NA

rs2847446 1 5555 + T A 937 NaN NaN NaN NA NA

rs9308393 1 6739 + T C 937 NaN NaN NaN NA NA

rs946364 1 8533 - T C 938 NaN NaN NaN NA NA

rs299251 1 10737 + A G 942 NaN NaN NaN NA NA

rs2456488 1 11779 + G C 934 NaN NaN NaN NA NA

rs1292700 1 12710 - A C 941 NaN NaN NaN NA NA

effAB effBB chi2.2df P2df

rs1646456 1.1117443 NaN 0 NA

rs7950586 NaN NaN 0 NA
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rs4785242 0.8842832 NaN 0 NA

rs4435802 NaN 6.970168e-309 0 NA

rs2847446 NaN NaN 0 NA

rs9308393 NaN NA 0 NA

rs946364 NaN 9.283721e-01 0 NA

rs299251 NaN NaN 0 NA

rs2456488 NaN NaN 0 NA

rs1292700 NaN 8.457300e-01 0 NA

Thus, there are no genome-wide empirically significant results. The ’top’ 10
SNPs are

> snps0 <- rownames(ds)

> snps0

[1] "rs1646456" "rs7950586" "rs4785242" "rs4435802" "rs2847446" "rs9308393"

[7] "rs946364" "rs299251" "rs2456488" "rs1292700"

(note that if the empirical P = 1, the rank is assigned quite arbitrarily)

Answer (Ex. 5) — First step of QC

> qc1 <- check.marker(ge03d2, call=0.95, perid.call=0.95,

+ p.level=0, ibs.exclude="both")

Excluding people/markers with extremely low call rate...

7589 markers and 950 people in total

0 people excluded because of call rate < 0.1

7 markers excluded because of call rate < 0.1

Passed: 7582 markers and 950 people

Running sex chromosome checks...

1934 heterozygous X-linked male genotypes found

2 X-linked markers are likely to be autosomal (odds > 1000 )

10 male are likely to be female (odds > 1000 )

6 female are likely to be male (odds > 1000 )

0 people have intermediate X-chromosome inbreeding (0.5 > F > 0.5)

If these people/markers are removed, 8 heterozygous male genotypes are left

... these will be considered missing in analysis.

... Use Xfix() to fix these problems.

Passed: 7580 markers and 934 people

... 8 X/Y/mtDNA ( 8 0 0 ) impossible heterozygotes and female Ys set as missing

RUN 1

7580 markers and 934 people in total

73 (0.9630607%) markers excluded as having low (<0.267666%) minor allele frequency

75 (0.9894459%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (P <0)

4 (0.4282655%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2558271 (s.e. 0.02102863)

4 (0.4282655%) people excluded because too high autosomal heterozygosity (FDR <1%)
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Excluded people had HET >= 0.4702949

Mean IBS is 0.7852411 (s.e. 0.01742783), as based on 2000 autosomal markers

8 (0.856531%) people excluded because of too high IBS (>=0.95)

In total, 7432 (98.04749%) markers passed all criteria

In total, 918 (98.28694%) people passed all criteria

RUN 2

7432 markers and 918 people in total

42 (0.5651238%) markers excluded as having low (<0.2723312%) minor allele frequency

0 (0%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (P <0)

0 (0%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2562716 (s.e. 0.0151377)

0 people excluded because too high autosomal heterozygosity (FDR <1%)

Mean IBS is 0.7879519 (s.e. 0.01554664), as based on 2000 autosomal markers

0 (0%) people excluded because of too high IBS (>=0.95)

In total, 7390 (99.43488%) markers passed all criteria

In total, 918 (100%) people passed all criteria

RUN 3

7390 markers and 918 people in total

0 (0%) markers excluded as having low (<0.2723312%) minor allele frequency

0 (0%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (P <0)

0 (0%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2562716 (s.e. 0.0151377)

0 people excluded because too high autosomal heterozygosity (FDR <1%)

Mean IBS is 0.7864124 (s.e. 0.01618755), as based on 2000 autosomal markers

0 (0%) people excluded because of too high IBS (>=0.95)

In total, 7390 (100%) markers passed all criteria

In total, 918 (100%) people passed all criteria

> summary(qc1)

$`Per-SNP fails statistics`
NoCall NoMAF NoHWE Redundant Xsnpfail

NoCall 82 0 0 0 0

NoMAF NA 115 0 0 0

NoHWE NA NA 0 0 0

Redundant NA NA NA 0 0

Xsnpfail NA NA NA NA 2

$`Per-person fails statistics`
IDnoCall HetFail IBSFail isfemale ismale isXXY otherSexErr

IDnoCall 4 0 0 0 0 0 0

HetFail NA 4 0 0 0 0 0

IBSFail NA NA 8 0 0 0 0

isfemale NA NA NA 10 0 0 0

ismale NA NA NA NA 6 0 0

isXXY NA NA NA NA NA 0 0

otherSexErr NA NA NA NA NA NA 0
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> data1 <- ge03d2[qc1$idok, qc1$snpok]

> data1 <- Xfix(data1)

... 7 X/Y/mtDNA ( 7 0 0 ) impossible heterozygotes and female Ys set as missing

> qc2 <- check.marker(data1, call=0.95, perid.call=0.95, p.level=0)

Excluding people/markers with extremely low call rate...

7390 markers and 918 people in total

0 people excluded because of call rate < 0.1

0 markers excluded because of call rate < 0.1

Passed: 7390 markers and 918 people

Running sex chromosome checks...

0 heterozygous X-linked male genotypes found

0 X-linked markers are likely to be autosomal (odds > 1000 )

0 male are likely to be female (odds > 1000 )

0 female are likely to be male (odds > 1000 )

0 people have intermediate X-chromosome inbreeding (0.5 > F > 0.5)

If these people/markers are removed, 0 heterozygous male genotypes are left

Passed: 7390 markers and 918 people

no X/Y/mtDNA-errors to fix

RUN 1

7390 markers and 918 people in total

0 (0%) markers excluded as having low (<0.2723312%) minor allele frequency

0 (0%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (P <0)

0 (0%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2562716 (s.e. 0.0151377)

0 people excluded because too high autosomal heterozygosity (FDR <1%)

Mean IBS is 0.7908779 (s.e. 0.01581427), as based on 2000 autosomal markers

0 (0%) people excluded because of too high IBS (>=0.95)

In total, 7390 (100%) markers passed all criteria

In total, 918 (100%) people passed all criteria

> summary(qc2)

$`Per-SNP fails statistics`
NoCall NoMAF NoHWE Redundant Xsnpfail

NoCall 0 0 0 0 0

NoMAF NA 0 0 0 0

NoHWE NA NA 0 0 0

Redundant NA NA NA 0 0

Xsnpfail NA NA NA NA 0

$`Per-person fails statistics`
IDnoCall HetFail IBSFail isfemale ismale isXXY otherSexErr

IDnoCall 0 0 0 0 0 0 0

HetFail NA 0 0 0 0 0 0

IBSFail NA NA 0 0 0 0 0
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isfemale NA NA NA 0 0 0 0

ismale NA NA NA NA 0 0 0

isXXY NA NA NA NA NA 0 0

otherSexErr NA NA NA NA NA NA 0

Answer (Ex. 6) — The list of genetic females who are coded as males is

> qc1$isfemale

[1] "id3374" "id6263" "id6835" "id8410" "id8509" "id8519" "id8542" "id2701"

[9] "id6494" "id3100"

Answer (Ex. 7) — The list of genetic males who are coded as females is

> qc1$ismale

[1] "id193" "id8475" "id2461" "id5669" "id7245" "id8301"

Answer (Ex. 8) — The number of ’XXY’ people is 0

Answer (Ex. 9) — Eight ’sporadic’ X-errors are left after removing people
with likely sex code errors (seven in the data set after first step of QC)

Answer (Ex. 10) — The list of IDs failing IBS checks (’twin’ DNAs) is

> qc1$ibsfail

[1] "id3368" "id9668" "id5437" "id956" "id386" "id660" "id2115" "id8370"

Answer (Ex. 11) — The second step of QC:

> data1.gkin <- ibs(data1[, autosomal(data1)], weight="freq")

> data1.dist <- as.dist(0.5 - data1.gkin)

> data1.mds <- cmdscale(data1.dist)

> km <- kmeans(data1.mds, centers=2, nstart=1000)

> cl1 <- names( which(km$cluster==1) )

> cl2 <- names( which(km$cluster==2) )

> if (length(cl1) > length(cl2)) {x<-cl2; cl2<-cl1; cl1<-x}

> cl1

[1] "id2097" "id2126" "id2878" "id3021" "id3176" "id4554" "id4756" "id7436"

[9] "id7533" "id9396" "id9546" "id4021" "id2171" "id6954" "id2136" "id5056"

[17] "id1751" "id6626" "id2970" "id1300" "id8639" "id1729" "id9398" "id9904"

[25] "id858"

> data2 <- data1[cl2,]

> qc2 <- check.marker(data2, hweids=(phdata(data2)$dm2==0), fdr=0.2)

Excluding people/markers with extremely low call rate...

7390 markers and 893 people in total

0 people excluded because of call rate < 0.1
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0 markers excluded because of call rate < 0.1

Passed: 7390 markers and 893 people

Running sex chromosome checks...

0 heterozygous X-linked male genotypes found

0 X-linked markers are likely to be autosomal (odds > 1000 )

0 male are likely to be female (odds > 1000 )

0 female are likely to be male (odds > 1000 )

0 people have intermediate X-chromosome inbreeding (0.5 > F > 0.5)

If these people/markers are removed, 0 heterozygous male genotypes are left

Passed: 7390 markers and 893 people

no X/Y/mtDNA-errors to fix

RUN 1

7390 markers and 893 people in total

5 (0.067659%) markers excluded as having low (<0.2799552%) minor allele frequency

0 (0%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (FDR <0.2)

0 (0%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2565083 (s.e. 0.01505982)

0 people excluded because too high autosomal heterozygosity (FDR <1%)

Mean IBS is 0.787009 (s.e. 0.01174357), as based on 2000 autosomal markers

0 (0%) people excluded because of too high IBS (>=0.95)

In total, 7385 (99.93234%) markers passed all criteria

In total, 893 (100%) people passed all criteria

RUN 2

7385 markers and 893 people in total

0 (0%) markers excluded as having low (<0.2799552%) minor allele frequency

0 (0%) markers excluded because of low (<95%) call rate

0 (0%) markers excluded because they are out of HWE (FDR <0.2)

0 (0%) people excluded because of low (<95%) call rate

Mean autosomal HET is 0.2565083 (s.e. 0.01505982)

0 people excluded because too high autosomal heterozygosity (FDR <1%)

Mean IBS is 0.7902995 (s.e. 0.01171197), as based on 2000 autosomal markers

0 (0%) people excluded because of too high IBS (>=0.95)

In total, 7385 (100%) markers passed all criteria

In total, 893 (100%) people passed all criteria

> summary(qc2)

$`Per-SNP fails statistics`
NoCall NoMAF NoHWE Redundant Xsnpfail

NoCall 0 0 0 0 0

NoMAF NA 5 0 0 0

NoHWE NA NA 0 0 0

Redundant NA NA NA 0 0

Xsnpfail NA NA NA NA 0
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$`Per-person fails statistics`
IDnoCall HetFail IBSFail isfemale ismale isXXY otherSexErr

IDnoCall 0 0 0 0 0 0 0

HetFail NA 0 0 0 0 0 0

IBSFail NA NA 0 0 0 0 0

isfemale NA NA NA 0 0 0 0

ismale NA NA NA NA 0 0 0

isXXY NA NA NA NA NA 0 0

otherSexErr NA NA NA NA NA NA 0

> data2 <- data2[qc2$idok, qc2$snpok]

> data2 <- Xfix(data2)

no X/Y/mtDNA-errors to fix

> ####

> #ge03d2.clean <- data2

> #save(ge03d2.clean, file="ge03d2.clean.RData")

> ####

Answer (Ex. 12) — The list of genetic outliers is

> cl1

[1] "id2097" "id2126" "id2878" "id3021" "id3176" "id4554" "id4756" "id7436"

[9] "id7533" "id9396" "id9546" "id4021" "id2171" "id6954" "id2136" "id5056"

[17] "id1751" "id6626" "id2970" "id1300" "id8639" "id1729" "id9398" "id9904"

[25] "id858"

Answer (Ex. 13) — :

> table(phdata(data2)$dm2)

0 1

472 421

Answer (Ex. 14) — :

> nsnps(data2)

[1] 7385

Answer (Ex. 15) — No:

> descriptives.marker(data2)[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 1 4.000 44.000 258.000 7385

Prop 0 0.001 0.006 0.035 1

FROM THIS POINT ON THE RUNNING OF THE TUTORIAL FAILS (2013.02.20,
USING GENABEL DEV VERSION 1.7-4). I COMMENTED OUT THE R
CODE BELOW.
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Answer (Ex. 16) — :

> #qts <- qtscore(dm2, data2, trait="binomial")

> #lambda(qts)

Answer (Ex. 17) — :

> #res1 <- qtscore(dm2, data=data2, times=200, quiet=TRUE, trait="binomial")

> #ds1 <- descriptives.scan(res1)

> #ds1

There are SNPs which are empirically genome-wide significant in the data. To
get the list of ’top’ 10 SNPs:

> #snps1 <- rownames(ds1)

> #snps1

Answer (Ex. 18) — There is little overlap between SNPs before and after
QC:

> #snps0

> #snps1

Answer (Ex. 19) — :

> #data(ge03d2c)

> #snps1

> #confdat <- ge03d2c[, snps1]

> #rep <- qtscore(dm2, confdat, times=10000, quiet=TRUE)

> #descriptives.scan(rep)

Answer (Ex. 20) — Two-stage P -value is

> # snps1

> # finres <- matrix(NA, 10, 3)

> # colnames(finres) <- c("Stage 1", "Replication", "Combined")

> # rownames(finres) <- snps1

> # for (i in 1:10) {

> # finres[i, 1] <- res1[which(snpnames(data2)==snps1[i]), "Pc1df"]

> # finres[i, 2] <- rep[which(snpnames(confdat)==snps1[i]), "P1df"]

> # finres[i, 3] <- finres[i, 1]*finres[i, 2]

> # }

> # finres

> # for (i in 1:10) {

> # if (finres[i, 3] <= 0.05) {

> # print(c("---------", rownames(finres)[i], "-------"))

> #

> # print(c(rownames(finres)[i], "stage 1:"))

> # ph <- phdata(data2)$dm2

> # gt <- as.numeric(data2[, rownames(finres)[i]])
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> # print(summary( glm(ph~gt, family=binomial) )$coef)

> #

> # print(c(rownames(finres)[i], "stage 2:"))

> # ph <- phdata(confdat)$dm2

> # gt <- as.numeric(confdat[, rownames(finres)[i]])

> # print(summary(glm(ph~gt, family=binomial))$coef)

> #

> # print(c(rownames(finres)[i], "Joint:"))

> # ph <- c(phdata(data2)$dm2, phdata(confdat)$dm2)

> # gt <- c(as.numeric(data2[, rownames(finres)[i]]),

> # as.numeric(confdat[, rownames(finres)[i]]))

> # print(summary( glm(ph~gt, family=binomial) )$coef)

> # }

> # }

> #replicatedsnps <- rownames(finres)[finres[, "Stage 1"] <= 0.05 &

> # finres[, "Replication"] <= 0.05 &

> # finres[, "Combined"] <= 0.05]

> #replicatedsnps

> #sigsnps <- rownames(finres)[finres[, "Combined"] <= 0.05]

> #sigsnps

At the first glance, NWSexprlength(replicatedsnps) SNPs may be claimed as
replicated because both first stage and replication P -values are ≤ 0.05 and ef-
fects are consistent, and additionally NWSexprlength(sigsnps) - length(replicatedsnps)
may be claimed as ’significant’ because joint P -values are ≤ 0.05 and the effects
are consistent. Generally, a more thorough simulation experiment should be
performed.

Answer (Ex. 21) — SNP “rs7903146” had empirical P -value ≤ 0.05 at both
stages, and very strong joint significance. It can be claimed as replicated.
You can check if any of the SNPs you have identified as significant or repli-
cated are the ones which were simulated to be associated with dm2 by using
the command show.ncbi(c("snpname1", "snpname2", "snpname3")) where
snpnameX stands for the name of your identified SNP. The ”true” SNPs can be
found on NCBI and some are located in known T2D genes (just because we used
these names to name the ”significant” ones).



Chapter 6

GWA analysis in presence
of stratification: theory

In genetic association studies, we look for association between a genetic poly-
morphism and the value of a trait of interest. The best scenario – the one we
always hope for – is that the observed association results from causation, that
is the polymorphism studied is functionally involved in the control of the trait.
However, association has no direction, and making causal inference in epidemi-
ology in general and in genetic epidemiology in particular is usually not possible
based on statistical analysis only.

In fact, most associations observed in genetic studies are due to a confounder
– an (unobserved) factor which is associated with both the genetic polymorphism
and the trait analysed. Presence of such factor leads to induced, “secondary”
correlation between the trait and the polymorphism; if we would have controlled
for that factor in the association model, the relation between the polymorphism
and the trait would have gone.

There are two major types of confounders leading to induced correlation in
genetic association studies. One type is “good” confounding of association by
the real, unobserved functional variant, which is, as a rule, not present on the
SNP array, but is in linkage disequilibrium (LD) with typed SNP. Under this
scenario, the functional variant is associated with the trait because of causative
relation; at the same time it is associated with a typed polymorphism located
nearby because of LD. This confounding induces secondary correlation between
the typed polymorphism and the trait, making localistion of the true functional
polymorphism (LD mapping) possible.

Other major type of confounding observed in genetic association studies is
confounding by population (sub)structure. Let us consider a study in which sub-
jects come from two distantly related populations, say Chinese and European.
Due to genetic drift, these two populations will have very different frequencies
at many loci throughout the genome. At the same time, these two populations
are different phenotypically (prevalence of different disease, mean value of quan-
titative traita) due to accumulated genetic and cultural differences. Therefore
any of these traits will show association with multiple genomic loci. While some
of these associations may be genuine genetic associations in a sense that ei-
ther the polymorphisms themselves, or the polymorphisms close by are causally
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involved, most of these associations will be genetically false positives – noise as-
sociations generated by strong genetic and phenotypic divergence between the
two populations.

The scenario described above is extreme and indeed it is hard to imagine a
genetic asociation study in which two very distinct populations are so blintly
mixed and analysed not taking this mixture into account. However, a more
subtle scenario where several slighly genetically different populations are mixed
in the same study is frequently the case and a matter of concern in GWA studies.

In this chapter, we will define what is genetic structure, and how it can be
quantified (section ??); what are the effects of genetic structure on the standard
association tests (section ??) and specific association tests which take possible
genetic structure into account (section ??).

The rest of this chapter is ?temporarily? deleted due to potential
copyright issues



Chapter 7

GWA in presence of genetic
stratification: practice

Both ethnic admixture and presence of close relationships represents examples
of confounding in association analysis. However, the methods to correct for
stratification as resulting from mixture of subjects coming from different ge-
netic populations, and methods to correct for family relations may be slightly
different, and will be described separately in the next sections.

7.1 Analysis with ethnic admixture

In previous section we detected genetic stratification by analysis of genomic
kinship matrix and excluded genetic outliers from our further analysis. When
there are only a few such outliers, exclusion them from analysis is a good option.
However, in large studies cases and controls are usually selected across a number
of locations and genetic populations, and stratification is expected by design.
In such case, analysis of association should account for this stratification.

Let us do structured association analysis using the data1 data derived in
previous section.

If you are not running R yet, start R and load GenABEL-package library by
typing

> library(GenABEL)

and load the ’data1’ workspace generated in section 5 (”Genome-wide association
analysis”).

> load("data1.RData")

> ls()

[1] "cl1" "data1" "data1.gkin" "data2.qt" "old"

First, let us check how much test statistic inflation is there if we ignore
stratification.

> data1.qt <- qtscore(dm2,data1)

> lambda(data1.qt)
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$estimate

[1] 1.051744

$se

[1] 0.000756613

We now will consider several ways to account for stratification, namely, stru-
cutured association analysis, method of Price et al. (EIGENSTRAT), a similar
method based on adjusting for the principal components of variation of genomic
kinship matrix, and use of a mixed model.

One of the ways to do that is to perform structured association analysis. In
such analysis, effect and its variance are estimated within each strata separately,
and then these estimates are pooled to generate global statistics. The strata can
be known from design (e.g. place of birth or ethnicity of parents) or estimated
from GWA data.

To do structured association analysis we need to define a variable which will
tell what population the study subjects belong to. In previous section, we stored
the names of ’outlier’ subjects in variable cl1:

> cl1

[1] "id2097" "id6954" "id2136" "id858"

We can use function %in% to find out what names of subjects are in cl1:

> pop <- as.numeric(idnames(data1) %in% cl1)

Let us check how the ’population’ is distributed among the cases and con-
trols:

> table(pop,phdata(data1)$dm2)

pop 0 1

0 47 77

1 0 4

As we have seen before, one of the clusters contains only the cases.
Now, structured association may be done with qtscore function by specify-

ing strata argument:

> data1.sa <- qtscore(dm2,data=data1,strata=pop)

> lambda(data1.sa)

$estimate

[1] 1.03431

$se

[1] 0.0007059588

We can compare the original results, results of analysis excluding outliers, and
structured association analysis by
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Figure 7.1: Comparison of the original results, results of analysis excluding
outliers, and structured association analysis.

> par(mfcol=c(3,1))

> plot(data1.qt,ylim=c(1,6))

> plot(data2.qt,ylim=c(1,6))

> plot(data1.sa,ylim=c(1,6))

> par(mfcol=c(1,1))

The resulting plot is presented at figure 7.1. In this case, there is little difference,
because all people belonging to the smaller sub-population are cases.

Other way to adjust for genetic (sub)structure is to apply the method of
Price et al. (EIGENSTRAT ), which make use of principal components of the
genomic kinship matrix to adjust both phenotypes and genotypes for possible
stratification. In GenABEL-package, such analysis is done using egscore func-
tion.

> data1.eg <- egscore(dm2,data=data1,kin=data1.gkin)

> lambda(data1.eg)

$estimate

[1] 1.102747

$se

[1] 0.001043038

The analysis plot may be added to the previous one by
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> par(mfcol=c(3,1))

> plot(data1.eg,ylim=c(1,6))

Now let us apply adjustment for the stratification by use of the principal
components of genetic variation. For that we first need to extract the principal
components of genetic variation by constructing the distance matrix

> dst <- as.dist(0.5-data1.gkin)

and performing the classical multidimensional scaling

> pcs <- cmdscale(dst,k=10)

> pcs[1:5,]

[,1] [,2] [,3] [,4] [,5]

id199 0.030289769 0.057952824 0.10342206 -0.020496319 -0.02678162

id300 0.031798583 0.004789923 0.02947431 0.033227508 0.05977593

id403 0.060654557 0.079249013 -0.06111279 -0.081417523 0.03294180

id415 -0.004913697 -0.030714900 0.07807686 0.017468144 0.03078079

id666 -0.012639670 0.016176179 -0.08784632 -0.002322116 0.02957059

[,6] [,7] [,8] [,9] [,10]

id199 0.08021104 0.01144582 -0.020228061 -0.001507913 -0.060483058

id300 0.03702791 0.02887831 0.005142389 -0.005340720 0.094991803

id403 -0.01481834 -0.01259170 0.040037267 -0.048689378 0.007304146

id415 -0.02472941 0.07900292 0.075300986 0.028609310 0.021747288

id666 -0.04742543 -0.11594090 0.106539735 0.026380262 -0.022472669

Now we can use these PCs for adjustment:

> data1.pca <- qtscore(dm2~pcs[,1]+pcs[,2]+pcs[,3],data1)

> lambda(data1.pca)

$estimate

[1] 1.004946

$se

[1] 0.0007356663

> plot(data1.pca,ylim=c(1,6))

Finally, let us use the full genomic kinship matrix for the adjustemnt for
pupulational structure. First, let us estimate the polygenic model with

> h2a <- polygenic(dm2,data1,kin=data1.gkin)

The resulting ’heritability’ estimate is

> h2a$esth2

[1] 0.2547813

Now we can perform mixed model approximation analysis using mmscore func-
tion
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Figure 7.2: Comparison of method of Price et al., principal components adjust-
ment and mixed modelling.

> data1.mm <- mmscore(h2a,data1)

> lambda(data1.mm)

$estimate

[1] 1

$se

[1] NA

> plot(data1.mm,ylim=c(1,6))

> par(mfcol=c(1,1))

The resulting plot is presented at figure 7.2.

Again, the difference between three analysis methods is marginal because
there are no highly differentiated SNPs in the data set, and one sub-population
is presented by cases only. Still, the signals at chromosome one and three slightly
improved, while these at two and X went down.

Load and analyse the data set presented in file stratified.RData. GWA
data presented in this file concern a study containing data from several pop-
ulations. All these populations originate from the same base population some
generations ago. Some of these populations mantained large size and some were
small. There was little (2.5%) migration between populations.
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Two traits (’quat’ and ’bint’) ara available for analysis. Investigate relations
between phenotypes and covariates. Perform association analysis. Answer the
questions

DATAPROBLEM: ok, here is a problem; replacing the ’strdat’
with data set available within GenABEL. Hence comments to the
analysis below are not making sense anymore
Ex. 1 — What covariates are significantly associated with the traits?

Ex. 2 — How many SNPs and IDs are presented in the data set?

Ex. 3 — How many SNPs and IDs pass the quality control (use SNP and ID
call rate of 0.98)?

Ex. 4 — Is there evidence for stratification coming from the distribution of
GW test for HWE (what is λ?)

Ex. 5 — Is there evidence that the test statistics for trait quat is inflated
(what is λ?)

Ex. 6 — Is there evidence that the test statistics for trait bint is inflated
(what is λ?)

Ex. 7 — How many genetically distinct populations are present in the data
set? How many people belong to each population?

Ex. 8 — Is the case/control and quantitative trait disbalance between popu-
lations?

Ex. 9 — For the quantitative trait, what method corrects best for stratifica-
tion (in terms of minimal residual inflation)?

Ex. 10 — What is the strongest SNP associated with trait quat? What model
(method and covariates used) gives best results? Is the finding GW-significant?

Ex. 11 — What is the strongest SNP associated with trait bint? What model
(method and covariates used) gives best results? Is the finding GW-significant?

7.2 Analysis of family data

In this section we will consider analysis of quantitative traits in a family-based
cohort, where participants were not selected for the value of the trait under
analysis. Such data may be generated in any study selecting participants based
on kinship (e.g. collections of sibships, nuclear or extended families); also any
study in a genetically isolated population is likely to end up with a large propor-
tion of relatively closely related individuals, even if ascertainment was random
with the respect to kinship.

In pedigree-based association analysis the pedigree works as a confounder –
exactly in the same manner as ethnic origin may work in a population-based
study. Any genetic polymorphism is inherited through genealogy, and therefore
genotypes are more similar between close relatives. In the same manner, any
other heritable trait will be also more similar between relatives, and therefore
certain degree of association is expected between any genetic marker and any
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heritable trait in a family-based sample. If additive 1 d.f. test for association
is considered, the effect of confounding by pedigree can be shown to inflate the
resulting null distribution of presumably χ2

1 test statistics by a certain constant
λ.

As you remember, this is exactly what happens when simple test for as-
sociation is applied to a population-based data with ethnic admixture. In a
population-based study with strong admixture (both in terms of the proportion
and ethnic ”distance”), some genomic regions may have been differentially se-
lected in different populations. In such situation, use of genomic control does not
prevent false-positive association between a trait and these regions, and other
methods, such as EIGENSTRAT or Structured Association, are to be used.

For pedigree-based data coming from (relatively) genetically homogeneous
population it can be shown that λ is a function of trait’s heritability and pedigree
structure, expressed as kinship matrix. Thus, genomic control is a simple and
valid method to study association in genetically homogeneous families. However,
this method reduces (or summarises if you prefer) all the abundant information
about heritability and relationship into a single parameter λ, therefore it is not
the most powerful method.

In quantitative genetics, a mixed polygenic model of inheritance may be
considered as ”industrial standard” – this model has sound theoretical bases
and is proven by time to describe well inheritance of complex quantitative traits.
This model describes the vector of observed quantitative traits as

Y = µ+G+ e (7.1)

where µ is the intercept, G is contribution from polygene, and e is random
residual.

It is assumed that for each individual its ”personal” random residual ei is
distributed as Normal with mean zero and variance σ2

e . As these residuals
are independent between pedigree members, the joint distribution of residuals
in the pedigree can be modelled using multivariate normal distribution with
variance-covariance matrix proportional to the identity matrix I (this is a matrix
with diagonal elements equal to 1, and off-diagonal elements equal to zero):
e ∼MVN(0, Iσ2

e).
The polygenic component G describes the contribution from multiple inde-

pendently segregating genes all having a small additive effect onto the trait (in-
finitesimal model). For a person for whom parents are not known, it is assumed
that Gi is distributed as Normal with mean zero and variance σ2

G. Assuming
model of infinitely large number of genes, it can be shown that given polygenic
values for parents, the distribution of polygene in offspring follows Normal dis-
tribution with mean (Gm + Gf )/2 and variance σ2

G/2, where Gm is maternal
and Gf is paternal polygenic values. From this, it can be shown that jointly the
distribution of polygenic component in a pedigree can be described as multi-
variate normal with variance-covariance matrix proportional to the relationship
matrix Φ: G ∼MVN(0,Φσ2

G).
Thus the log-likelihood for this model can be written as a function of three

parameters:

L(µ, σ2
G, σ

2
e) = − 1

2
· loge

∣∣(Φ · σ2
G + I · σ2

e)
∣∣

+ (Y − µ)T · (Φ · σ2
G + I · σ2

e)−1 · (Y − µ) (7.2)



144CHAPTER 7. GWA IN PRESENCEOFGENETIC STRATIFICATION: PRACTICE

where µ is intercept, σ2
G is the proportion of variance explained by the polygenic

component, and σ2
e is the residual variance.

Covariates such as sex, age, or a genetic marker studied for association can
be easily included into the model:

Y = µ+
∑
j

βj · Cj +G+ e

Here, Cj is the vector containing j-th covariate and betaj is the coefficient
of regression of Y onto that covariate.

This mixed morel leads to likleihood

L(µ, σ2
G, σ

2
e , β1, β2, ...) = − 1

2
· loge

∣∣(Φ · σ2
G + I · σ2

e)
∣∣

+

Y − (µ+
∑
j

βj · Cj)

T

·
(
Φ · σ2

G + I · σ2
e

)−1
·

Y − (µ+
∑
j

βj · Cj)

 (7.3)

This general formulation can be easily adopted to test genetic association;
for example, an effect of a SNP can be incorporated into regression model

Y = µ+ βg · g +G+ e

where g is the vector containing genotypic values. In this mode, you can specify
a variety of 1 d.f. models by different coding of the vector g. For example,
if you consider an ”AG” polymorphism and want to estimate and test additive
effect of the allele ”G”, you should code ”AA” as 0 (zero), ”AG” as 1 and ”GG”
as 2. Under this coding, the βg will estimate additive contribution from the ”G”
allele. If you are willing to consider dominant model for G, you should code
”AA” and ”AG” as 0 and ”GG” as 1. Recessive and over-dominant models can
be specified in a similar manner. If, however, you want to estimate general 2
d.f. model, the specification should be different:

Y = µ+ βa · g + βd · Ig=2 +G+ e

where g is coded as 0, 1 or 2, exactly the same as in the additive model, and Ig=2

is the binary indicator which takes value of one when g is equal to 2 and zero
otherwise. In this model, βa will estimate the additive and βd – the dominance
effect. There may be other, alternative coding(s) allowing for essentially the
same model, for example

Y = µ+ β1 · Ig=1 + β2 · Ig=2 +G+ e

would estimate trait’s deviation in these with g = 1 (β1) and these with g = 2
(β2) from the reference (g = 0).

The classical way to estimate mixed polygenic model and test for significance
is Maximum Likelihood (ML) or Restricted ML (REML) using equation (7.3).
However, when large pedigrees are analysed, ML/REML solution may take pro-
hibitively long time, i.e. from minutes to hours for single SNP analysis, making
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study of hundreds of thousand of SNPs impossible. Therefore fast approximate
tests were developed for the purposes of GWA association analysis in samples
of relatives.

Here we will cover two of fast approximations available, FAmily-based Score
Test for Association (FASTA, Chen & Abecasis, 2007) and Genome-wide Rapid
Analysis using Mixed Models And Score test (GRAMMAS, Amin et al, 2007).
Both tests are based on the classical polygenic mixed model and are performed
in two steps.

First, polygenic model as specified by equation (7.1) and likelihood (7.2) is
estimated using available data.

Secondly, the maximum likelihood estimates (MLEs) of the intercept, µ̂,
proportion of variance explained by the polygenic component, σ̂2

G, and residual
variance, σ̂2

e , are used to compute the FASTA test statistics

T 2
F =

(
(g − E[g])T · (Φ · σ̂2

G + I · σ̂2
e)−1 · (Y − µ̂)

)2
(g − E[g])T · (Φ · σ̂2

G + I · σ̂2
e)−1 · (g − E[g])

It can be shown that T 2
F follows χ2

1 when pedigree structure is 100% complete
and 100% correct. As this is never actually the case, application of GC to correct
for residual inflation is recommended.

FASTA test results in unbiased estimates of the SNP effect and correct
P − values. Please keep in mind that this is correct – as for any score test
– only when alternative is reasonably close to the null, i.e. when the SNP ex-
plains small proportion of trait’s variance. Disadvantages of this test are that
is can be relatively slow when thousands of study subjects are analysed, and
that permutation procedures can not be applied to estimate genome-wide sig-
nificance, because the data structure is not exchangeable.

Other test, GRAMMAS, also exploits MLEs from the polygenic model (7.1).
However, these are used to first compute the vector of environmental residuals
ê, using standard equation

ê = σ̂2
e · (Φ · σ̂2

G + I · σ̂2
e)−1 · (Y − µ̂)

These residuals, in turn, are used to run simple score test:

T 2
G =

(
(g − E[g])T · ê)

)2
(g − E[g])T · (g − E[g])

This test is conservative, but GC can be used to correct for the deflation of
the test statistics.

The fact that environmental residuals ê are not dependent on pedigree struc-
ture leads to a nice property of the GRAMMAS test: the data structure be-
comes exchangeable and permutations may be used to estimate genome-wide
significance. When used in combination with GC, P − values derived from
GRAMMAS test are correct; however, there is a downward bias in estimates of
SNP effects.

When using FASTA or GRAMMAS test, it is recommended to estimate ge-
nomic kinship matrix from available genome-wide data, and use it in analysis
instead of pedigree kinship. This solution firstly does not rely on the complete-
ness and quality of pedigree; secondly, genomic kinship is more likely to give a
better estimate of a true covariance between individual genomes, while pedigree
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kinship provides one with expectation. Therefore use of genomic kinship is ex-
pected to lead to better estimates of polygenic model, and thus better power to
detect association in GWA analysis. This being said, we generally advocate use
of genomic, and not pedigree kinship. Of cause, you can only implement this
solution when you have GWA data; in a candidate gene study you will have to
rely on the pedigree structure to estimate kinship matrix.

7.3 Example GWA analysis using family-based
data

DATAPROBLEM In this section, we will explore small data set (notWork-
ingSexprnids(erfs) people, notWorkingSexprnsnps(erfs) SNPs). Let us load and
explore it: DATAPROBLEM trying to keep things working technically
- the interpretation is not sane anymore

> #load("RData/erfsmall.RData")

> data(ge03d2.clean)

> erfs <- ge03d2.clean[1:100,]

> phdata(erfs)$qtbas <- phdata(erfs)$weight

> pkins <- matrix(rnorm(nids(erfs)^2,sd=0.01),ncol=nids(erfs),nrow=nids(erfs))

> ls()

[1] "erfs" "ge03d2.clean" "pkins"

> class(erfs)

[1] "gwaa.data"

attr(,"package")

[1] "GenABEL"

> class(pkins)

[1] "matrix"

You can see that there a two objects, erfs and pkins, presented in the data.
The class of the first object is standard GenABEL-package’s gwaa.data-class;
this is the object containing GWA data. The other object contains kinship
matrix, as estimated from pedigree data.

You can check the number of people and SNPs in the data set with

> nids(erfs)

[1] 100

> nsnps(erfs)

[1] 7374

As usual, it is advisable to check the distribution of SNPs by chromosome:

> table(chromosome(erfs))
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1 2 3 X

3482 1927 1417 548

(here, 23 stays for pseudo-autosomal region of the X chromosome); you can see
that markers are evenly spread over the chromosomes.

Summary marker statistics can be generated by

> descriptives.marker(gtdata(erfs))

$`Minor allele frequency distribution`
X<=0.01 0.01<X<=0.05 0.05<X<=0.1 0.1<X<=0.2 X>0.2

No 336.000 1289.000 1275.000 1625.00 2849.000

Prop 0.046 0.175 0.173 0.22 0.386

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 0 1 21.000 182.000 7374

Prop 0 0 0.003 0.025 1

$`Distribution of proportion of successful genotypes (per person)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 0 0 0 56.00 44.00

Prop 0 0 0 0.56 0.44

$`Distribution of proportion of successful genotypes (per SNP)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 0 28.000 1967.000 2710.000 2669.000

Prop 0 0.004 0.267 0.368 0.362

$`Mean heterozygosity for a SNP`
[1] 0.2565366

$`Standard deviation of the mean heterozygosity for a SNP`
[1] 0.1627121

$`Mean heterozygosity for a person`
[1] 0.2460929

$`Standard deviation of mean heterozygosity for a person`
[1] 0.01891617

You can see that the quality of genotypic data is quite reasonable: call rate is
generally high, both per-person and per SNP, and there is little deviation from
Hardy-Weinberg equilibrium.

Let us explore pedigree kinship matrix. First, let us just look how this matrix
looks like by displaying few elements from the upper-left corner:

> pkins[1:5,1:5]

[,1] [,2] [,3] [,4] [,5]

[1,] 4.398682e-06 -0.007443991 0.001027849 -0.001690993 0.003792633
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[2,] -2.690560e-03 0.005686529 -0.002653584 -0.002288409 -0.002089908

[3,] -1.551598e-02 0.002559050 -0.005672204 0.000416812 0.012694795

[4,] -1.523381e-02 -0.004245080 0.013530972 -0.008887517 -0.005388854

[5,] 7.371455e-03 0.018060832 -0.000732690 -0.009430937 -0.009738570

By definition, pedigree kinship should take values between 0 and 0.5 (plus
some small amount from inbreeding); kinship between (non-inbred) sibs or an
offspring and the parent is 1/4. You can see that in the upper-left corner there
is one inbred sib-pair (or parent-offspring pair; ”id2” and ”id5”). You can also
see that this matrix is symmetric around the diagonal.

Let us summarise the distribution of kinship coefficients; in doing this we
want to generate the summary for every off-diagonal element only once. Func-
tion lower.tri can be used to get the ”lower triangle” sub-matrix elements:

> summary(pkins[lower.tri(pkins)])

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.444e-02 -6.713e-03 1.919e-05 5.319e-05 6.701e-03 4.329e-02

As you can see, average relationship corresponds to that expected between
second cousins (1/64 = 0.015625) and third cousins (1/256 = 0.00390625).

We can also draw a histogram of the distribution of the kinship coefficients
(shown at figure 7.4A):

> hist(pkins[lower.tri(pkins)])

and see that most elations are indeed remote.
Let us estimate genomic kinship matrix using autosomal data with the com-

mand ibs, and look up the elements in the upper-left corner:

> gkins <- ibs(erfs[,autosomal(erfs)],weight="freq")

> gkins[1:5,1:5]

id4 id10 id25 id33 id35

id4 0.443821169 6.587000e+03 6.592000e+03 6601.0000000 6587.000000

id10 0.007417817 4.624733e-01 6.582000e+03 6592.0000000 6577.000000

id25 -0.005339590 3.822318e-03 4.783133e-01 6595.0000000 6583.000000

id33 0.001082992 1.240865e-02 -2.744355e-02 0.4946951 6590.000000

id35 -0.029822882 1.299173e-02 5.400605e-03 0.0161940 0.494195

Here, the estimated kinship is shown below the diagonal, and the number of
informative SNP pairs used for estimation is shown above the diagonal.

You can see that ”genomic kinship” coefficients may take values lower than
zero, which is consequence of the fact that in effect ”genomic kinship” is simply
covariance between the vectors of individual genotypes. This quantity, though
it provides an unbiased estimate of kinship, can be lower than zero.

> summary(gkins[lower.tri(gkins)])

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.074800 -0.020410 -0.008065 -0.005080 0.006761 0.154700

here, the average is quite close to that obtained with pedigree kinship.
We can also draw a histogram of the distribution of ”genomic kinship” coef-

ficients (shown at figure 7.4B):
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Figure 7.3: Population structure of ’strdat1’ data

> hist(gkins[lower.tri(gkins)])

and can easily graphically present relations between genomic and pedigree kin-
ship with

> plot(pkins[lower.tri(pkins)],gkins[lower.tri(gkins)])

(shown at figure 7.5), and estimate correlation between the two with

> cor(pkins[lower.tri(pkins)],gkins[lower.tri(gkins)])

[1] 0.01220139

From the graph, you can clearly see that, though there is a very strong
correlation between genomic and pedigree kinships, these are not identical.

In real data, you may find that there are some points where pedigree data
clearly suggest relation different from that suggested by genomic data. Which
one to believe? Generally, pedigrees are more prone to errors than genotypic
data. In the data containing close relatives it is better to rely on ”genomic
kinship”.

Let us first analyse the data using plain GC method:

> qts <- qtscore(qtbas,data=erfs)

You can check the estimate of the inflation factor λ with
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Figure 7.4: Distribution of the pedigree (upper histogram) and genomic (lower
histogram) kinship coefficients for erfs data set.

> lambda(qts)$est

[1] 1.033775

This is relatively high value, suggesting presence of close relatives in data and
high heritability of the trait.

The top 10 hits from GWA analysis can be displayed with

> descriptives.scan(qts,sort="Pc1df")

Summary for top 10 results, sorted by Pc1df

Chromosome Position Strand A1 A2 N effB se_effB chi2.1df

rs5941875 1 3640023 + T A 97 19.68681 4.942356 15.86656

rs8994834 1 1845763 + T G 98 14.48396 3.898478 13.80335

rs4550412 1 1844249 + A G 99 15.14198 4.147116 13.33131

rs9253916 1 3655610 + C A 100 15.37248 4.237537 13.16015

rs9154666 1 3689697 + G C 99 14.77000 4.093217 13.02062

rs762401 1 3689720 + T C 99 -14.69329 4.090225 12.90457

rs7881009 2 7390224 - C A 100 -33.38444 9.454799 12.46762

rs3361134 3 11192711 + G A 99 -13.37212 3.801274 12.37491

rs6927636 1 385190 - G A 99 15.40149 4.421136 12.13551

rs1289801 1 4041666 + G T 100 26.26488 7.627108 11.85854

P1df effAB effBB chi2.2df P2df Pc1df
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rs5941875 6.796909e-05 22.154991 24.12716 16.84336 0.0002200451 8.940686e-05

rs8994834 2.029744e-04 13.336702 29.93850 13.88632 0.0009652165 2.580954e-04

rs4550412 2.610112e-04 12.319392 35.27284 13.97540 0.0009231695 3.293272e-04

rs9253916 2.859663e-04 21.651670 18.72325 16.14362 0.0003122177 3.597997e-04

rs9154666 3.080797e-04 13.685849 31.22516 13.11489 0.0014195048 3.867340e-04

rs762401 3.277815e-04 -17.539309 -31.11841 13.00428 0.0015002246 4.106811e-04

rs7881009 4.140675e-04 -33.384438 NA 12.46762 0.0004140675 5.150733e-04

rs3361134 4.351428e-04 -6.364411 -26.42515 14.11220 0.0008621359 5.404643e-04

rs6927636 4.947085e-04 16.864623 27.51095 12.35393 0.0020767259 6.120307e-04

rs1289801 5.739765e-04 26.264881 NA 11.85854 0.0005739765 7.068666e-04

here, nominal P − values after genomic control are given in column named
”Pc1df”.

We can estimate genome-wide empirical significance by using the same func-
tion with times argument, which tells the number of permutations:

> qts.e <- qtscore(qtbas,data=erfs,times=200,quiet=TRUE)

|

| | 0%

|

|======================================================================| 100%

> descriptives.scan(qts.e,sort="Pc1df")

Summary for top 10 results, sorted by Pc1df

Chromosome Position Strand A1 A2 N effB se_effB chi2.1df

rs5941875 1 3640023 + T A 97 19.68681 4.942356 15.86656

rs8994834 1 1845763 + T G 98 14.48396 3.898478 13.80335

rs4550412 1 1844249 + A G 99 15.14198 4.147116 13.33131

rs9253916 1 3655610 + C A 100 15.37248 4.237537 13.16015

rs9154666 1 3689697 + G C 99 14.77000 4.093217 13.02062

rs762401 1 3689720 + T C 99 -14.69329 4.090225 12.90457

rs7881009 2 7390224 - C A 100 -33.38444 9.454799 12.46762

rs3361134 3 11192711 + G A 99 -13.37212 3.801274 12.37491

rs6927636 1 385190 - G A 99 15.40149 4.421136 12.13551

rs1289801 1 4041666 + G T 100 26.26488 7.627108 11.85854

P1df Pc1df effAB effBB chi2.2df P2df

rs5941875 0.130 0.185 22.154991 24.12716 16.84336 NA

rs8994834 0.395 0.485 13.336702 29.93850 13.88632 NA

rs4550412 0.490 0.575 12.319392 35.27284 13.97540 NA

rs9253916 0.515 0.615 21.651670 18.72325 16.14362 NA

rs9154666 0.545 0.645 13.685849 31.22516 13.11489 NA

rs762401 0.575 0.680 -17.539309 -31.11841 13.00428 NA

rs7881009 0.680 0.770 -33.384438 NA 12.46762 NA

rs3361134 0.695 0.775 -6.364411 -26.42515 14.11220 NA

rs6927636 0.755 0.820 16.864623 27.51095 12.35393 NA

rs1289801 0.800 0.875 26.264881 NA 11.85854 NA

(argument ”quiet” supress warning messages; this is used for the purposes of
this tutorial, normally you do not need to specify this option)
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As you can see, in this analysis nothing comes even close to genome-wide
significance, as indicated by genome-wide corrected P−values (column ”Pc1df”)
all >> 0.05 .

Let us estimate polygenic model with

> h2 <- polygenic(qtbas,kin=gkins,data=erfs)

The results of estimation are contained in ”h2an” element of the resulting
analysis object:

> h2$h2an

$minimum

[1] 747.5489

$estimate

[1] 92.3114671 0.4273438 663.0750850

$gradient

[1] -1.421085e-07 -7.105427e-08 1.136868e-07

$code

[1] 1

$iterations

[1] 7

In the ”estimate” list, the MLEs shown correspond to intercept µ̂, heritability
ĥ2 = σ̂2

G/(σ̂
2
G + σ̂2

e), and total variance σ̂2
T = σ̂2

G + σ̂2
e . You can see that

heritability of the trait is indeed high – almost 80%.
Under these conditions (hight heritability, presence of close relatives) we may

expect that FASTA and GRAMMAS analysis exploiting heritability model and
relationship matrix in exact manner may have better power compared to simple
GC.

Let us run FASTA test using estimated polygenic model, as specified by h2

object:

> mms <- mmscore(h2,data=erfs)

There is little residual inflation left when we use ”genomic kinship” matrix:

> lambda(mms)$est

[1] 1

And the significance of ”top” hit becomes an order of magnitude better com-
pared to plain GC:

> descriptives.scan(mms,sort="Pc1df")

Summary for top 10 results, sorted by Pc1df

Chromosome Position Strand A1 A2 N effB se_effB chi2.1df

rs5941875 1 3640023 + T A 97 20.31359 5.201615 15.25096
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rs1289801 1 4041666 + G T 100 29.17214 7.817672 13.92457

rs4550412 1 1844249 + A G 99 15.94462 4.311427 13.67686

rs8994834 1 1845763 + T G 98 14.75871 4.061652 13.20357

rs9253916 1 3655610 + C A 100 16.17211 4.596761 12.37740

rs6927636 1 385190 - G A 99 15.46655 4.437391 12.14875

rs6191668 1 3630425 - G A 100 17.23958 5.060666 11.60481

rs3361134 3 11192711 + G A 99 -13.05935 3.912352 11.14210

rs9154414 1 1836956 - A C 100 14.27818 4.307012 10.98990

rs7881009 2 7390224 - C A 100 -31.57798 9.543831 10.94771

P1df Pc1df effAB effBB chi2.2df P2df

rs5941875 0.0000941288 0.0000941288 NA NA 0 NA

rs1289801 0.0001902950 0.0001902950 NA NA 0 NA

rs4550412 0.0002171135 0.0002171135 NA NA 0 NA

rs8994834 0.0002794163 0.0002794163 NA NA 0 NA

rs9253916 0.0004345614 0.0004345614 NA NA 0 NA

rs6927636 0.0004912069 0.0004912069 NA NA 0 NA

rs6191668 0.0006578149 0.0006578149 NA NA 0 NA

rs3361134 0.0008439010 0.0008439010 NA NA 0 NA

rs9154414 0.0009160997 0.0009160997 NA NA 0 NA

rs7881009 0.0009371951 0.0009371951 NA NA 0 NA

If you compare these results to that obtained with simple GC, you can also
see that the ranks of top hits have changed quite a bit; unbiased estimated of
genetic effects were obtained.

However, we can not estimate genome-wide significance with FASTA, be-
cause the data structure is not exchangeble.

Using GRAMMAS method, you can estimate nominal P − values by

> grs <- qtscore(h2$pgres,data=erfs,clam=FALSE)

> lambda(grs)$est

[1] 0.8998862

In the above analysis, note that the estimated ”inflation” factor λ is less
than one, i.e. now it is the GRAMMAS deflation factor. In order to obtain
non-concervative test statistics, we had to say to qtscore that deflation is OK
(parameter clam=FALSE).

We can see ”top” nominal corrected P − values with

> descriptives.scan(grs,sort="Pc1df")

Summary for top 10 results, sorted by Pc1df

Chromosome Position Strand A1 A2 N effB se_effB chi2.1df

rs5941875 1 3640023 + T A 97 11.049817 2.892067 14.598002

rs1289801 1 4041666 + G T 100 16.025348 4.475877 12.819130

rs4550412 1 1844249 + A G 99 8.433205 2.431798 12.026249

rs6927636 1 385190 - G A 99 8.772838 2.592604 11.450066

rs8994834 1 1845763 + T G 98 7.733678 2.293640 11.368989

rs7881009 2 7390224 - C A 100 -17.886196 5.548436 10.391897

rs9253916 1 3655610 + C A 100 7.931660 2.486748 10.173366

rs3361134 3 11192711 + G A 99 -7.058117 2.231245 10.006525
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rs6191668 1 3630425 - G A 100 8.580199 2.757873 9.679351

rs9154414 1 1836956 - A C 100 7.501683 2.411571 9.676480

P1df effAB effBB chi2.2df P2df Pc1df

rs5941875 0.0001330556 12.468348 13.337066 15.54028 0.0004221544 0.0000563345

rs1289801 0.0003430932 16.025348 NA 12.81913 0.0003430932 0.0001604628

rs4550412 0.0005245653 7.599102 18.340676 12.18983 0.0022543047 0.0002564749

rs6927636 0.0007149146 9.564196 15.765123 11.63588 0.0029737318 0.0003610113

rs8994834 0.0007468052 7.076555 16.023283 11.44763 0.0032672281 0.0003788329

rs7881009 0.0012656955 -17.886196 NA 10.39190 0.0012656955 0.0006782175

rs9253916 0.0014248395 11.762204 8.529627 13.39739 0.0012325173 0.0007729162

rs3361134 0.0015598655 -3.716155 -13.964066 11.15333 0.0037851766 0.0008541251

rs6191668 0.0018635041 11.907381 3.293695 13.63234 0.0010959101 0.0010393086

rs9154414 0.0018664189 6.073566 17.517734 10.15451 0.0062370161 0.0010411021

By comparing this output to that from FASTA test, you can see that P −
values are quite close, but the effects are underestimated with GRAMMAS, as
expected.

However, the streangths of GRAMMAS test is not only its speed, but also
possiblity to estimate genome-wide significance. This can be done by

> grs.e <- qtscore(h2$pgres,data=erfs,times=200,clam=FALSE,quiet=TRUE)

|

| | 0%

|

|======================================================================| 100%

> descriptives.scan(grs.e,sort="Pc1df")

Summary for top 10 results, sorted by Pc1df

Chromosome Position Strand A1 A2 N effB se_effB chi2.1df

rs5941875 1 3640023 + T A 97 11.049817 2.892067 14.598002

rs1289801 1 4041666 + G T 100 16.025348 4.475877 12.819130

rs4550412 1 1844249 + A G 99 8.433205 2.431798 12.026249

rs6927636 1 385190 - G A 99 8.772838 2.592604 11.450066

rs8994834 1 1845763 + T G 98 7.733678 2.293640 11.368989

rs7881009 2 7390224 - C A 100 -17.886196 5.548436 10.391897

rs9253916 1 3655610 + C A 100 7.931660 2.486748 10.173366

rs3361134 3 11192711 + G A 99 -7.058117 2.231245 10.006525

rs9154414 1 1836956 - A C 100 7.501683 2.411571 9.676480

rs6191668 1 3630425 - G A 100 8.580199 2.757873 9.679351

P1df Pc1df effAB effBB chi2.2df P2df

rs5941875 0.310 0.130 12.468348 13.337066 15.54028 NA

rs1289801 0.650 0.370 16.025348 NA 12.81913 NA

rs4550412 0.805 0.530 7.599102 18.340676 12.18983 NA

rs6927636 0.885 0.690 9.564196 15.765123 11.63588 NA

rs8994834 0.890 0.720 7.076555 16.023283 11.44763 NA

rs7881009 0.975 0.885 -17.886196 NA 10.39190 NA

rs9253916 0.980 0.900 11.762204 8.529627 13.39739 NA

rs3361134 0.985 0.910 -3.716155 -13.964066 11.15333 NA

rs9154414 1.000 0.935 6.073566 17.517734 10.15451 NA

rs6191668 1.000 0.935 11.907381 3.293695 13.63234 NA
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Figure 7.5: Scatter-plot relating pedigree and genomic kinships for erfs data
set.

As you can see, now the ”top” hit starts approaching genome-wide signif-
icance (genome-wide P − value ∼ 10%), showing the power of kinship-based
methods under high heritability model.

Finally, let us plot −log10 nominal P −values from different methods across
the genome. Let black dots correspond to GC, green to GRAMMAS and red to
FASTA (figure 7.6):

> plot(mms,df="Pc1df")

> add.plot(grs,df="Pc1df",col=c("lightgreen","lightblue"),cex=1.2)

> add.plot(qts)

You can see that there is a great degree of correlation between the FASTA
and GRAMMAS P − values, while plain GC really stands apart.

7.4 Exercise: analysis of family data

Exercise 1 Repeat heritability estimation, FASTA and GRAMMAS analysis of
previous section using pediree kinship (pkins object). Discuss the results.

In the next section, you will explore a small (695 people) subset of people
from ERF, a family-based study with participants coming from a genetically
isolated population and sampled based on kinship (all living descendants of 22
couples living in the area in mid-XIXth century). The study participants were
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genotyped using Illumina 6K ”linkage” array. QC was already performed. Your
trait of interest is ”qtbas”.

Explore the data set and answer the questions:

Exercise 2 Describe the trait ”qt”. Can you detect significant outliers at visual
inspection? Is trait distributed normally? What are significant covariates?

Exercise 3 Explore relations between genomic and pedigree kinship (these are
provided in data as gkin and pkin data objects, respectively). What are your
conclusions? Which matrix would you use later on?

Exercise 4 What is the heritability of the trait (take care: polygenic analysis
may rung for a long while)? Based on heritability analysis, how would you rank
different methods of GWA analysis for this trait (and why)?

Exercise 5 Do GWA analysis using simple score test with genomic control.
Estimate genome-wide significance. What are your conclusions?

Run GWA analysis using the ”best” method and model as you have decided
in previous exercises. Estimate genome-wide significance. What are your con-
clusions? Did they change compared to simple analysis?

Exercise 6 Repeat the last ”best” analysis using pedigree kinship. How your
results change?

Exercise 7 If you have any time left – repeat analysis using ”qt” trait. This
one is much more fun, but also more laborous to analyse.

7.5 Answers to exercises

Answer (Ex. 1) — Basically, all covariates are significantly associated with
the traits:

> summary(lm(quat~sex+age+age2,data=phdata(strdat)))

Call:

lm(formula = quat ~ sex + age + age2, data = phdata(strdat))

Residuals:

Min 1Q Median 3Q Max

-21.3585 -4.9637 0.0959 4.7896 22.4212

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 167.935224 3.139965 53.483 <2e-16 ***

sex 12.102771 0.505588 23.938 <2e-16 ***

age -0.025454 0.127427 -0.200 0.842

age2 -0.001697 0.001247 -1.361 0.174

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1
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Residual standard error: 7.222 on 816 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.4517, Adjusted R-squared: 0.4497

F-statistic: 224 on 3 and 816 DF, p-value: < 2.2e-16

> summary(glm(bint~sex+age+age2,data=phdata(strdat),family=binomial))

Call:

glm(formula = bint ~ sex + age + age2, family = binomial, data = phdata(strdat))

Deviance Residuals:

Min 1Q Median 3Q Max

-1.3318 -1.1169 -0.8151 1.1907 1.5775

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.1234742 0.9295943 -3.360 0.000779 ***

sex 0.4913847 0.1424384 3.450 0.000561 ***

age 0.0976423 0.0373181 2.616 0.008884 **

age2 -0.0007977 0.0003623 -2.202 0.027697 *

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1137.4 on 821 degrees of freedom

Residual deviance: 1110.6 on 818 degrees of freedom

AIC: 1118.6

Number of Fisher Scoring iterations: 4

Answer (Ex. 2) — How many SNPs and IDs are presented in the data set?

> nsnps(strdat)

[1] 7374

> nids(strdat)

[1] 822

Answer (Ex. 3) — Let us perform the QC:

> qc <- check.marker(strdat,call=0.98,perid.call=0.98,p.level=0)

Excluding people/markers with extremely low call rate...

7374 markers and 822 people in total

0 people excluded because of call rate < 0.1

0 markers excluded because of call rate < 0.1

Passed: 7374 markers and 822 people

Running sex chromosome checks...

0 heterozygous X-linked male genotypes found
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0 X-linked markers are likely to be autosomal (odds > 1000 )

0 male are likely to be female (odds > 1000 )

0 female are likely to be male (odds > 1000 )

0 people have intermediate X-chromosome inbreeding (0.5 > F > 0.5)

If these people/markers are removed, 0 heterozygous male genotypes are left

Passed: 7374 markers and 822 people

no X/Y/mtDNA-errors to fix

RUN 1

7374 markers and 822 people in total

0 (0%) markers excluded as having low (<0.3041363%) minor allele frequency

32 (0.4339571%) markers excluded because of low (<98%) call rate

0 (0%) markers excluded because they are out of HWE (P <0)

0 (0%) people excluded because of low (<98%) call rate

Mean autosomal HET is 0.2564845 (s.e. 0.01498989)

0 people excluded because too high autosomal heterozygosity (FDR <1%)

Mean IBS is 0.7911611 (s.e. 0.01163827), as based on 2000 autosomal markers

0 (0%) people excluded because of too high IBS (>=0.95)

In total, 7342 (99.56604%) markers passed all criteria

In total, 822 (100%) people passed all criteria

RUN 2

7342 markers and 822 people in total

0 (0%) markers excluded as having low (<0.3041363%) minor allele frequency

0 (0%) markers excluded because of low (<98%) call rate

0 (0%) markers excluded because they are out of HWE (P <0)

0 (0%) people excluded because of low (<98%) call rate

Mean autosomal HET is 0.2564845 (s.e. 0.01498989)

0 people excluded because too high autosomal heterozygosity (FDR <1%)

Mean IBS is 0.7873167 (s.e. 0.01186485), as based on 2000 autosomal markers

0 (0%) people excluded because of too high IBS (>=0.95)

In total, 7342 (100%) markers passed all criteria

In total, 822 (100%) people passed all criteria

> strdat1 <- strdat[qc$idok,qc$snpok]

The number of IDs and SNPs passing are

> nsnps(strdat1)

[1] 7342

> nids(strdat1)

[1] 822

Answer (Ex. 4) — Not really:

> descriptives.marker(strdat1)[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X
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No 2 5.000 64.000 316.000 7342

Prop 0 0.001 0.009 0.043 1

Answer (Ex. 5) — Yes:

> qts.q <- qtscore(quat~sex+age+age2,strdat1)

> lambda(qts.q)

$estimate

[1] 1.29321

$se

[1] 0.005757743

Answer (Ex. 6) — Yes:

> qts.b <- qtscore(bint~sex+age+age2,strdat1)

> lambda(qts.b)

$estimate

[1] 1.153616

$se

[1] 0.0011015

Answer (Ex. 7) — Two genetically distinct populations are present in the
data set. These can be visualised with

> gkin <- ibs(strdat1,w="freq")

> dst <- as.dist(0.5-gkin)

> pcs <- cmdscale(dst,k=10)

> plot(pcs[,1:2])

(graph presented in figure 7.3)
The populations can be dustinguished with

> pop <- 1*(pcs[,1]>0)

and the number of people belonging to each can be computed with

> table(pop)

pop

0 1

414 408

Answer (Ex. 8) — Yes, there is significant case/control disbalance:

> descriptives.trait(strdat1,by=pop)

No(by.var=0) Mean SD No(by.var=1) Mean SD Ptt

id 414 NA NA 408 NA NA NA

sex 414 0.519 0.500 408 0.547 0.498 0.434

age 414 50.355 13.082 408 49.609 12.890 0.410
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Figure 7.6: Comparison of FASTA (red), GRAMMAS (green), and plain GC
(black).

dm2 414 0.505 0.501 408 0.444 0.497 0.079

height 414 168.399 9.952 406 168.755 9.518 0.601

weight 414 85.685 24.093 406 84.043 23.348 0.322

diet 414 0.043 0.204 408 0.047 0.211 0.831

bmi 414 30.198 8.285 406 29.421 7.574 0.161

quat 414 168.399 9.952 406 168.755 9.518 0.601

bint 414 0.505 0.501 408 0.444 0.497 0.079

age2 414 2706.340 1331.713 408 2626.745 1322.704 0.390

Pkw Pexact

id NA NA

sex 0.434 0.443

age 0.313 NA

dm2 0.079 0.081

height 0.559 NA

weight 0.325 NA

diet 0.831 0.868

bmi 0.231 NA

quat 0.559 NA

bint 0.079 0.081

age2 0.313 NA
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Answer (Ex. 9) — MMSCORE corrects best for stratification in terms of
minimal residual inflation:

> sa <- qtscore(quat~sex+age+age2,strdat1,strat=pop)

> lambda(sa)$est

[1] 1.30266

> es <- egscore(quat~sex+age+age2,strdat1,kin=gkin)

> lambda(es)$est

[1] 1.332255

> pcs <- cmdscale(as.dist(0.5-gkin),k=10)

> pc <- qtscore(quat~sex+age+age2+pcs[,1]+pcs[,2]+pcs[,3],strdat1,strat=pop)

> lambda(pc)$est

[1] 1.303465

> h2an <- polygenic(quat~sex+age+age2,data=strdat1,kin=gkin)

> h2an$h2an

$minimum

[1] 4053.14

$estimate

[1] 168.709434625 12.159162310 -0.058149589 -0.001385047 0.100428761

[6] 51.746547785

$gradient

[1] 8.225762e-01 -8.163948e-03 4.391218e+00 1.454718e+04 -2.778261e-01

[6] -3.008137e-02

$code

[1] 2

$iterations

[1] 2

> mm <- mmscore(h2an,strdat1)

> lambda(mm)$est

[1] 1.121713

Answer (Ex. 10) — The best results are achieved with mmscore:

> summary(mm)

Summary for top 10 results, sorted by P1df

Chromosome Position Strand A1 A2 N effB se_effB chi2.1df

rs3436694 2 8921418 - C G 812 -4.626188 0.6358782 52.92960

rs70099 2 8857747 + C A 810 -5.193788 0.7277973 50.92694

rs3074653 2 8915495 - G C 813 -3.456679 0.5281765 42.83116

rs1801282 2 8931192 + C T 809 -2.993759 0.5435064 30.34062

rs3175719 2 8950441 + A C 812 -2.652433 0.5556236 22.78911

rs6392986 2 8935924 + A T 810 1.745768 0.4232456 17.01328
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rs7217010 1 2495320 + C A 812 4.399529 1.0719319 16.84527

rs4277955 2 7088955 - C T 806 -1.931248 0.4909742 15.47243

rs645280 2 7087627 + C A 815 1.649827 0.4470985 13.61666

rs1351516 2 8602074 + G A 815 -2.154476 0.5852874 13.55018

P1df Pc1df effAB effBB chi2.2df P2df

rs3436694 3.457202e-13 6.454717e-12 NA NA 0 NA

rs70099 9.586886e-13 1.605502e-11 NA NA 0 NA

rs3074653 5.967390e-11 6.438807e-10 NA NA 0 NA

rs1801282 3.624556e-08 1.984181e-07 NA NA 0 NA

rs3175719 1.807868e-06 6.563749e-06 NA NA 0 NA

rs6392986 3.711923e-05 9.839634e-05 NA NA 0 NA

rs7217010 4.055425e-05 1.065218e-04 NA NA 0 NA

rs4277955 8.371737e-05 2.040332e-04 NA NA 0 NA

rs645280 2.241872e-04 4.937396e-04 NA NA 0 NA

rs1351516 2.322688e-04 5.096838e-04 NA NA 0 NA



Chapter 8

Imperfect knowledge about
genotypes

This chapter is mostly copy-pasted from ProbABEL-package manual – user is
encouraged to check it directly for the latest version.

8.1 Motivation

Many statistical and experimental techniques, such as imputations and high-
throughput sequencing, generate data which are informative for genome-wide
association analysis and are probabilistic in the nature.

When we work with directly genotyped markers using such techniques as
SNP or microsatellite typing, we would normally know the genotype of a par-
ticular person at a particular locus with very high degree of confidence, and, in
case of biallelic marker, can state whether genotype is AA, AB or BB.

On the contrary, when dealing with imputed or high-throughput sequencing
data, for many of the genomic loci we are quite uncertain about the genotypic
status of the person. Instead of dealing with known genotypes we work with
a probability distribution that is based on observed information, and we have
estimates that true underlying genotype is either AA, AB or BB. The degree
of confidence about the real status is measured with the probability distribution
{P (AA), P (AB), P (BB)}.

Several techniques may be applied to analyse such data. The most sim-
plistic approach would be to pick up the genotype with highest probability,
i.e. maxg[P (g = AA), P (g = AB), P (g = BB)] and then analyse the data as
if directly typed markers were used. The disadvantage of this approach is that
it does not take into account the probability distribution – i.e. the uncertainty
about the true genotypic status. Such analysis is statistically wrong: the esti-
mates of association parameters (regression coefficients, odds or hazard ratios,
etc.) are biased, and the bias becomes more pronounced with greater probability
distribution uncertainty (entropy).

One of the solutions that generate unbiased estimates of association param-
eters and takes the probability distribution into account is achieved by perform-
ing association analysis by means of regression of the outcome of interest onto
estimated genotypic probabilities.

163
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The ProbABEL-package package was designed to perform such regression in
a fast, memory-efficient and consequently genome-wide feasible manner. Cur-
rently, ProbABEL-package implements linear, logistic regression, and Cox pro-
portional hazards models. The corresponding analysis programs are called
palinear, palogist, and pacoxph.

8.2 Input files

ProbABEL-package takes three files as input: a file containing SNP information
(e.g. the MLINFO file of MACH), a file with genome- or chromosome-wide
predictor information (e.g. the MLDOSE or MLPROB file of MACH), and a file
containing the phenotype of interest and covariates.

Optionally, the map information can be supplied (e.g. the ”legend” files of
HapMap).

The dose/probability file may be supplied in filevector format in which
case ProbABEL-package will operate much faster, and in low-RAM mode (ap-
prox. ≈ 128 MB). See the R libraries GenABEL-package and DatABEL-package

on how to convert MACH and IMPUTE files to filevector format (functions:
mach2databel() and impute2databel(), respectively).

8.2.1 SNP information file

In the simplest scenario, the SNP information file is an MLINFO file generated
by MACH. This must be a space or tab-delimited file containing SNP name,
coding for allele 1 and 2 (e.g. A, T, G or C), frequency of allele 1, minor allele
frequency and two quality metrics (“Quality”, the average maximum posterior
probability and “Rsq”, the proportion of variance decrease after imputations).

Actually, for ProbABEL-package, it does not matter what is written in this
file – this information is just brought forward to the output. However, it is
critical that the number of columns is seven and the number of lines in the file
is equal to the number of SNPs in the corresponding DOSE file (plus one for
the header line).

The example of SNP information file content follows here (also to be found
in ProbABEL/examples/test.mlinfo)

Note that header line is present in the file. The file describes five SNPs.

8.2.2 Genomic predictor file

Again, in the simplest scenario this is an MLDOSE or MLPROB file gener-
ated by MACH. Such file starts with two special columns plus, for each of the
SNPs under consideration, a column containing the estimated allele 1 dose (ML-
DOSE). In an MLPROB file, two columns for each SNP correspond to posterior
probability that person has two (PA1A1

) or one (PA1A2
) copies of allele 1. The

first “special” column is made of the sequential id, followed by an arrow followed
by study ID (the one specified in the MACH input files). The second column
contains the method keyword (e.g. “MLDOSE”).

An example of the few first lines of an MLDOSE file for five SNPs described in
SNP information file follows here (also to be found in the file ProbABEL/examples/test.mldose)
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The order of SNPs in the SNP information file and DOSE-file must
be the same. This should be the case if you just used MACH outputs.

Therefore, by all means, the number of columns in the genomic predictor file
must be the same as the number of lines in the SNP information file plus one.

The dose/probability file may be supplied in filevector format (.fvi and
.fvd files) in which case ProbABEL will operate much faster, and in low-RAM
mode (approx. 128 MB). On the command line simply specify the .fvi file
as argument for the -dose option (cf. section 8.3 for more information on the
options accepted by ProbABEL). See the R libraries GenABEL and DatABEL
on how to convert MACH and IMPUTE files to filevector format (functions:
mach2databel() and impute2databel(), respectively).

8.2.3 Phenotypic file

The phenotypic data file contains phenotypic data, but also specifies the analysis
model. There is a header line, specifying the variable names. The first column
should contain personal study IDs. It is assumed that both the total number
and the order of these IDs are exactly the same as in the genomic
predictor (MLDOSE) file described in previous section. This is not
difficult to arrange using e.g. R; an example is given in the ProbABEL/examples

directory.
Missing data should be coded with ’NA’, ’N’ or ’NaN’ codes. Any

other coding will be converted to some number which will be used in analysis!
E.g. coding missing as ’-999.9’ will result in an analysis which will consider
-999.9 as indeed a true measurements of the trait/covariates.

In the case of linear or logistic regression (programs palinear and palogist,
respectively), the second column specifies the trait under analysis, while the
third, fourth, etc. provide information on covariates to be included into analysis.
An example few lines of phenotypic information file designed for linear regression
analysis follow here (also to be found in ProbABEL/examples/height.txt)

Note again that the order of IDs is the same between the MLDOSE file and
the phenotypic data file. The model specified by this file is height ∼ µ+sex+age,
where µ is the intercept.

Clearly, you can for example include sex × age interaction terms by spec-
ifying another column having a product of sex and age here.

For logistic regression, it is assumed that in the second column cases are
coded as “1” and controls as “0”. An couple of example lines of a phenotypic
information file designed for logistic regression analysis follow here (also to be
found in ProbABEL/examples/logist_data.txt)

You can see that in the first 10 people, there are three cases, as indicated
by ”chd” equal to one. The model specified by this file is chd ∼ µ+ sex + age +
othercov.

In case of the Cox proportional hazards model, the composition of the
phenotypic input file is a bit different. In the second column and third col-
umn, you need to specify the outcome in terms of follow-up time (column
two) and event (column three, “1” if an event occurred and zero if censored).
Columns starting from four (inclusive) specify covariates to be included into the
analysis. An example few lines of a phenotypic information file designed for
the Cox proportional hazards model analysis follow here (also to be found in
ProbABEL/examples/coxph_data.txt)
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You can see that for the first ten people, the event occurs for three of them,
while for the other seven there is no event during the follow-up time, as indicated
by the “chd” column. Follow-up time is specified in the preceding column. The
covariates included into the model are age (presumably at baseline), sex and
“othercov”; thus the model, in terms of R/survival is
Surv(fuptime chd, chd) ∼ sex + age + othercov.

8.2.4 Optional map file

If you would like map information (e.g. base pair position) to be included in
your outputs, you can supply a map file. These follow HapMap ”legend” file
format. For example, for the five SNPs we considered the map-file may look like
(example can be found in ProbABEL/examples/test.map)

The order of the SNPs in the map file should follow that in the SNP infor-
mation file. Only information from the second column – the SNP location – is
actually used to generate the output.

8.3 Running an analysis

To run linear regression, you should use the program called palinear; for logistic
analysis use palogist, and for the Cox proportional hazards model use pacoxph
(all are found in the ProbABEL/bin/ directory after you have compiled the
program).

There are in total 11 command line options you can specify to the ProbABEL-package
analysis functions palinear or palogist. If you run either program without
any argument, you will get a short explanation to command line options:

user@server:~$ palogist

Usage: ../bin/palogist options

Options:

--pheno : phenotype file name

--info : information (e.g. MLINFO) file name

--dose : predictor (e.g. MLDOSE/MLPROB) file name

--map : [optional] map file name

--nids : [optional] number of people to analyse

--chrom : [optional] chromosome (to be passed to output)

--out : [optional] output file name (default is regression.out.txt)

--skipd : [optional] how many columns to skip in predictor

(dose/prob) file (default 2)

--ntraits : [optional] how many traits are analysed (default 1)

--ngpreds : [optional] how many predictor columns per marker

(default 1 = MLDOSE; else use 2 for MLPROB)

--separat : [optional] character to separate fields (default is space)

--score : use score test

--no-head : do not report header line

--allcov : report estimates for all covariates (large outputs!)

--interaction : which covariate to use for interaction with SNP

(default is no ineraction, 0)
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--mmscore : score test for association between a trait and genetic

polymorphism, in samples of related individuals

--robust : report robust (aka sandwich, aka Hubert-White) standard

errors

--help : print help

8.3.1 Basic analysis options

However, for a simple run only three options are mandatory, which specify the
necessary files needed to run the regression analysis.

These options are -dose (or -d), specifying the genomic predictor/MLDOSE
file described in sub-section 8.2.2; -pheno (or -p), specifying the phenotypic
data file described in sub-section 8.2.3; and -info (or -i), specifying the SNP
information file described in sub-section 8.2.1.

If you change to the ProbABEL/examples directory you can run an analysis
of height by running

user@server:~/ProbABEL/examples/$ ../bin/palinear -p height.txt

-d test.mldose -i test.mlinfo

Output from the analysis will be directed to the regression.out.csv file.
The analysis of a binary trait (e.g. chd) can be run with

user@server:~/ProbABEL/examples/$ ../bin/palogist -p logist_data.txt

-d test.mldose -i test.mlinfo

To run a Cox proportional hazards model, try

user@server:~/ProbABEL/examples/$ ../bin/pacoxph -p coxph_data.txt

-d test.mldose -i test.mlinfo

Please have a look at the shell script files example_qt.sh, example_bt.sh
and example_all.sh to have a better overview of the analysis options.

To run an analysis with MLPROB files, you need specify the MLPROB file
with the -d option and also specify that there are two genetic predictors per
SNP, e.g. you can run linear model with

user@server:~/ProbABEL/examples/$ ../bin/palinear -p height.txt

-d test.mlprob -i test.mlinfo

--ngpreds=2

8.3.2 Advanced analysis options

The option -interaction allows you to include interaction between SNPs and
any covariate. If for example your model is

trait ∼ sex + age + SNP,

running the program with the option -interaction=2 will model

trait ∼ sex + age + SNP + age× SNP.

The option -robust allows you to compute so-called“robust” (a.k.a.“sandwich”,
a.k.a. Hubert-White) standard errors (cf. section 8.7 “Methodology” for details).
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With the option -mmscore a score test for association between a trait and
genetic polymorphisms in samples of related individuals is performed. A file
with the inverse of the variance-covarince matrix goes as input parameter with
that option, e.g. -mmscore <filename>. The file has to contain the first column
with id names exactly like in phenotype file, BUT OMITTING people with no
measured phenotype. The rest is a matrix. The phenotype file in case of using
the -mmscore argument may contain any amount of covariates (this is different
from previous versions). The first column contains id names, the second the
trait. The others are covariates.

An example of how a polygenic object estimated by GenABEL-package can
be used with ProbABEL is provided in ProbABEL/examples/mmscore.R

Though technically -mmscore allows for inclusion of multiple covariates,
these should be kept to minimum as this is a score test. We suggest that any
covariates explaining an essential proportion of variance should be fit as part of
GenABEL-package’s polygenic procedure.

8.3.3 Running multiple analyses at once: probabel.pl

The Perl script bin/probabel.pl_example represents a handy wraper for ProbABEL-package
functions. To start using it the configuration file bin/probabel_config.cfg_example
needs to be edited. The configuration file consists of five columns. Each column
except the first is a pattern for files produced by MACH (imputation software).
The column named “cohort” is an identifying name of a population (“ERGO” in
this example), the column “mlinfo path” is the full path to mlinfo files, includ-
ing a pattern where the chromosome number has been replaced by _._chr_._.
The columns “mldose path”, “mlprobe path” and “legend path” are paths and
patterns for “mldose”, “mlprob” and “legend” files, respectively. These also need
to include the pattern for the chromosome as used in the column for the“mlinfo”
files. Probably you also have to change the variable $config in the script to
point to the full path of the configuration file and the variable @anprog to point
full path to the ProbABEL-package scripts.

8.4 Output file format

Let us consider what comes out of the linear regression analysis described in
the previous section. After the analysis has run, in the output file you will find
something like

Here, only the first three lines of output have been shown. Note that lines
starting with +> are actually the ones continuing the previous line – they have
just been wrapped so we can see these long lines.

The header provides a short description of what can be found in a specific
column. The first column provides the SNP name and next six are descriptions
which were taken directly from the SNP information file. Therefore, these de-
scribe allele frequencies and the quality in your total imputations, not necessarily
in the data under analysis.

In contrast, starting with the next column, named n, the output concerns the
data analysed. Column 8 (n) tells the number of subjects for whom complete
phenotypic information was available. At this point, unless you have complete
measurements on all subjects, you should feel alarmed if the number here is
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exactly the number of people in the file – this may indicate you did not code
missing values according to ProbABEL-package format (’NA’, ’NaN’, or ’N’).

The next column, nine (“Mean predictor allele”), gives the estimated fre-
quency of the predictor allele (A1) in subjects with complete phenotypic data.

If the -chrom option was used, in the next column you will find the value
specified by this option. If -map option was used, in the subsequent column
you will find map location taken from the map-file. The subsequent columns
provide coefficients of regression of the phenotype onto genotype, corresponding
standard errors, and Wald χ2 test value.

8.5 Preparing input files

In the ProbABEL/bin directory you can find the prepare_data.R file – an R
script that arranges phenotypic data in right format. Please read this script for
details.

8.6 Memory use and performance

Maximum likelihood regression is implemented in ProbABEL-package. With
6,000 people and 2.5 millions SNPs, a genome-wide scan is completed in less
that an hour for a linear model with 1-2 covariates and overnight for logistic
regression or the Cox proportional hazards model (figures for a PC bought back
in 2007).

Memory may be an issue with ProbABEL-package if you use MACH text
dose/probability files, e.g. for large chromosomes, such as chromosome one
consumed up to 5 GB of RAM with 6,000 people.

We suggest that dose/probability file is to be supplied in filevector format
in which case ProbABEL-package will operate about 2-3 times faster, and in
low-RAM mode (approx. 128 MB). See the R libraries GenABEL-package and
DatABEL-package on how to convert MACH and IMPUTE files to filevector
format (functions: mach2databel() and impute2databel(), respectively).

When ’–mmscore’ option is used, the analysis may take quite some time.

8.7 Methodology

8.7.1 Analysis of population-based data

Linear regression assuming normal distribution

Standard linear regression theory is used to estimate coefficients of regression
and their standard errors. We assume a linear model with expectation

E[Y] = Xβ (8.1)

and variance-covariance matrix

V = σ2I,

where Y is the vector of phenotypes of interest, X is the design matrix, β is the
vector of regression parameters, σ2 is the variance and I is the identity matrix.
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The maximum likelihood estimates (MLEs) for the regression parameters
are given by

β̂ = (XTX)−1XTY (8.2)

and the MLE of the residual variance is

σ̂2 =
(Y −Xβ̂)T (Y −Xβ̂)

N − rX
, (8.3)

where N is the number of observations and rX is the rank of X (i.e. the number
of columns of the design matrix).

The variance-covariance matrix for the parameter estimates under alterna-
tive hypothesis can be computed as

varβ̂ = σ̂2(XTX)−1. (8.4)

For the j-the element β̂(j) of the vector of estimates the standard error
under the alternative hypothesis is given by the square root of the corresponding
diagonal element of the above matrix, varβ̂(jj), and the Wald test can be
computed with

T 2(j) =
β̂(j)2

varβ̂(jj)
,

which asymptotically follows the χ2 distribution with one degree of freedom
under the null hypothesis.

When testing significance for more than one parameter simultaneously, sev-
eral alternatives are available. Let us first partition the vector of parameters
into two components, β = (βg, βx), and our interest is testing the parameters
contained in βg (SNP effects), while βx (e.g. effects of sex, age, etc.) are consid-
ered nuisance parameters. Let us define the vector of the parameters of interest
which are fixed to certain values under the null hypothesis as βg,0.

Firstly, the likelihood ratio test can be obtained with

LRT = 2
(

logLik(β̂g, β̂x)− logLik(βg,0, β̂x)
)
,

which under the null hypothesis is asymptotically distributed as χ2 with the
number of degrees of freedom equal to the number of parameters specified by
βg. Assuming the normal distribution, the log-likelihood of a model specified
by the vector of parameters β and residual variance σ2 can be computed as

logLik(β, σ2) = −1

2

(
N · loge σ

2 + (Y − βX)T (I/σ2)(Y − βX)
)
.

Secondly, the Wald test can be used; for that the inverse variance-covariance
matrix of β̂g should be computed as

var−1
β̂g

= var−1
β̂

(g, g)− var−1
β̂

(g, x)
(
var−1

β̂
(x, x)

)−1
var−1

β̂
(x, g),

where var−1
β̂

(a, b) correspond to sub-matrices of the inverse of the variance-

covariance matrix of β̂, involving either only parameters of interest (g, g), nui-
sance parameters (x, x) or combination of these (x, g), (g, x).



8.7. METHODOLOGY 171

The Wald test statistics is then computed as

W 2 = (β̂g − βg,0)T var−1
β̂g

(β̂g − βg,0),

which asymptotically follows the χ2 distribution with the number of degrees
of freedom equal to the number of parameters specified by βg. The Wald test
generally is computationally easier than the LRT, because it avoids estimation
of the model specified by the parameter’s vector (βg,0, β̂x).

Lastly, similar to the Wald test, the score test can be performed by use of
var(βg,0,β̂x)

instead of varβ̂ .

Logistic regression

For logistic regression, the procedure to obtain parameters estimates, their
variance-covariance matrix, and tests are similar to these outlined above with
several modifications.

The expectation of the binary trait is defined as the expected probability of
the event as defined by the logistic function

E[Y] = π =
1

1 + e−(Xβ)
.

The estimates of the parameters are obtained not in one step, as is the case of
the linear model, but using an iterative procedure (iteratively re-weighted least
squares). This procedure is not described here for the sake of brevity.

The log-likelihood of the data is computed using the binomial probability
formula:

logLik(β) = YT loge π + (1−Y)T loge(1− π),

where loge π is a vector obtained by taking the natural logarithm of every value
contained in the vector π.

Robust variance-covariance matrix of parameter estimates

For a linear model, these are computed using formula

varr = (XTX)−1(XTRX)(XTX)−1,

where R is a diagonal matrix containing squares of residuals of Y. The same
formula may be used for “standard” analysis, in which case the elements of the
R matrix are constant, namely mean residual sum of squares (the estimate of
σ2).

Similar to that, the robust matrix is computed for logistic regression with

varr = (XTWX)−1(XTRX)(XTWX)−1,

where 1 is the vector of ones and W is the diagonal matrix of ”weights” used in
logistic regression.

Cox proportional hazards model

The implementation of the Cox proportional hazard model used in ProbABEL-package

is entirely based on the code of R library survival developed by Thomas Lumley
(function coxfit2), and is therefore not described here.

Many thanks to Thomas for making his code available under GNU GPL!
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8.7.2 Analysis of pedigree data

The framework for analysis of pedigree data follows the two-step logic developed
in the works of Aulchenko et al. (2007) and Chen and Abecasis (2007). General
analysis model is a linear mixed model which defines the expectation of the trait
as

E[Y] = Xβ,

identical to that defined for linear model (cf. section 8.1). To account for cor-
relations between the phenotypes of relatives which may be induced by family
relations the variance-covariance matrix is defined to be proportional to the
linear combination of the identity matrix I and the relationship matrix Φ:

Vσ2,h2 = σ2
(
2h2Φ + (1− h2)I

)
,

where h2 is the heritability of the trait. The relationship matrix Φ is twice
the matrix containing the coefficients of kinship between all pairs of individuals
under consideration; its estimation is discussed in a separate section ”8.7.2”
(8.7.2).

Estimation of a model defined in such a way is possible by numerical max-
imization of the likelihood function, however, the estimation of this model for
large pedigrees is laborious, and is not computationally feasible for hundreds of
thousands to millions of SNPs to be tested in the context of GWAS, as we have
demonstrated previously (Aulchenko et al., 2007).

Two-step score test for association

A two-step score test approach is therefore used to decrease the computational
burden. Let us first re-define the expectation of the trait by splitting the design
matrix in two parts, the ”base” part Xx, which includes all terms not changing
across all SNP models fit in GWAS (e.g. effects of sex, age, etc.), and the part
including SNP information, Xg:

E[Y] = Xxβx + Xgβg.

Note that the latter design matrix may include not only the main SNP effect,
but e.g. SNP by environment interaction terms.

At the first step, a linear mixed model not including SNP effects

E[Y] = Xxβx

is fitted. The maximum likelihood estimates (MLEs) of the model parameters

(regression coefficients for the fixed effects β̂x, the residual variance σ̂2
x and the

heritability ĥ2x) can be obtained by numerical maximization of the likelihood
function

logLik(βx, h
2, σ2) = −1

2

(
loge |Vσ2,h2 |+ (Y − βxXx)T V−1σ2,h2 (Y − βxXx)

)
,

where V−1σ2,h2 is the inverse and |Vσ2,h2 | is the determinant of the variance-
covariance matrix.

At the second step, the unbiased estimates of the fixed effects of the terms
involving SNP are obtained with

β̂g = (XT
g V−1

σ̂2,ĥ2
Xg)

−1XT
g V−1

σ̂2,ĥ2
Rβ̂x

,
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where V−1
σ̂2,ĥ2

is the variance-covariance matrix at the point of the MLE esti-

mates of ĥ2x and σ̂2
x and Rβ̂x

= Y−β̂xXx is the vector of residuals obtained from
the base regression model. Under the null model, the inverse variance-covariance
matrix of the parameter’s estimates is defined as

varβ̂g
= σ̂2

x(XT
g V−1

σ̂2,ĥ2
Xg)

−1.

Thus the score test for joint significance of the terms involving SNP can be
obtained with

T 2 = (β̂g − βg,0)T var−1
β̂g

(β̂g − βg,0),

where βg,0 are the values of parameters fixed under the null model. This test
statistics under the null hypothesis asymptotically follows the χ2 distribution
with the number of degrees of freedom equal to the number of parameters tested.
The significance of an individual j-the elements of the vector β̂g can be tested
with

T 2
j = β̂2

g(j) var−1
β̂g

(jj),

where β̂2
g(j) is the square of the j-th element of the vector of estimates β̂g,

and var−1
β̂g

(jj) corresponds to the j-th diagonal element of var−1
β̂g

. The latter

statistics asymptotically follows χ2
1.

Estimation of the kinship matrix

The relationship matrix Φ used in estimation of the linear mixed model for
pedigree data is twice the matrix containing the coefficients of kinship between
all pairs of individuals under consideration. This coefficient is defined as the
probability that two gametes randomly sampled from each member of the pair
are identical-by-descent (IBD), that is they are copies of exactly the same an-
cestral allele. The expectation of kinship can be estimated from pedigree data
using standard methods, for example the kinship for two outbred sibs is 1/4, for
grandchild-grandparent is 1/8, etc. For an outbred person, the kinship coeffi-
cient is 1/2 – that is two gametes sampled from this person at random are IBD
only if the same gamete is sampled. However, if the person is inbred, there is
a chance that a maternal and paternal chromosomes are also IBD. The proba-
bility of this is characterized by kinship between individual’s parents, which is
defined as the individual’s inbreeding coefficient, F . In this case, the kinship
coefficient for the individual is F + 1/2. Similar logic applies to computation of
the kinship coefficient for other types of pairs in inbred pedigrees.

The kinship matrix can be computed using the pedigree data using standard
methods. However, in many cases, pedigree information may be absent, incom-
plete, or not reliable. Moreover, the estimates obtained using pedigree data
reflect the expectation of the kinship, while the true realization of kinship may
vary around this expectation. In presence of genomic data it may therefore be
desirable to estimate the kinship coefficient from these, and not from pedigree.
It can be demonstrated that unbiased and positive semi-definite estimator of the
kinship matrix can be obtained (Astle and Balding, 2010; Amin et al., 2007) by
computing the kinship coefficients between individuals i and j with

K̂ij =
1

L

L∑
l=1

(gl,i − pl)(gl,j − pl)
pl(1− pl)
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where L is the number of loci, pl is the allelic frequency at l-th locus and
gl,j is the genotype of j-th person at the l-th locus, coded as 0, 1/2, and 1,
corresponding to the homozygous, heterozygous, and other type of homozygous
genotype. The frequency is computed for the allele which, when homozygous,
corresponds to the genotype coded as “1”.

8.8 How to cite

If you used ProbABEL-package for your analysis please give a link to the GenABEL
project home page

http://www.genabel.org/

and cite the ProbABEL-package paper to give us some credit:

Aulchenko YS, Struchalin MV, van Duijn CM.
ProbABEL package for genome-wide association analysis of imputed
data.
BMC Bioinformatics. 2010, 11:134.

A proper reference may look like

For the analysis of imputed data, we used the ProbABEL-package

from the GenABEL suite of programs (Aulchenko et al., 2010).

If you have used the Cox proportional hazard model, please mention the
R package survival by Thomas Lumley. Additionally to the above citation,
please tell that

The Cox proportional hazards model implemented in ProbABEL-package

makes use of the source code of the R package ”survival” as imple-
mented by T. Lumley.

http://www.genabel.org/


Chapter 9

Analysis of imputed data:
an example

In this chapter, you will perform an analysis of imputed data set. In this set of
120 individuals, 4500 SNPs are imputed based on information on 500 directly
typed SNPs. You will first analyse 500 directly typed SNPs and then proceed
to the analysis of imputed data. Finally, you will have a possibility to compare
your results to the results of analysis in case all 5000 SNPs were directly typed.

9.1 Analysis of 500 directly typed SNPs

Load the GenABEL-package library and load the data set we will use:

> library(GenABEL)

> load("RData/ImputedDataAnalysis.RData")

> ls()

[1] "df500" "df5k" "map5k" "old" "rcT"

Here, df500 contains the data including 500 directly typed SNPs, and rcT

is the vector containing the value of the trait of interest:

> nids(df500)

[1] 120

> nsnps(df500)

[1] 500

> length(rcT)

[1] 120

> rcT[1:10]

[1] -0.5560057 1.1798113 0.2721125 0.2174227 -0.8193852 -1.8739403

[7] 0.9530623 0.9022811 -1.0906900 0.5575454

175
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In all analysis that follow, do disregard the Genomic Control and GC-
corrected results: as we will analyse a small region with strong association,
the GC can not be applied.

Let us start with analysis of directly typed SNPs. For that, we will use
mlreg function of GenABEL-package. This function implements ML-regression
and Wald test of significance1. This will later on allow us direct comparison with
the results of ProbABEL-package, which implements the same testing procedure.

We can run regression of rcT on SNPs region-wise using

> qts500 <- mlreg(rcT~1,df500)

> qts500[1:5,]

Chromosome Position Strand A1 A2 N effB se_effB

rs6139074 20 11244 + A C 120 0.488853649 0.2079789

rs13043000 20 13288 + G T 120 -0.002890489 0.4394487

rs6037629 20 43093 + T G 120 0.504885204 0.4040614

rs6052070 20 44931 + A G 120 0.171428327 0.3037772

rs6116135 20 46930 + G A 120 -0.239668333 0.4235491

chi2.1df P1df Pc1df effAB effBB chi2.2df P2df

rs6139074 5.524833e+00 0.0187484 0.2123725 NA NA NA NA

rs13043000 4.326395e-05 0.9947519 0.9972156 NA NA NA NA

rs6037629 1.561315e+00 0.2114728 0.5073673 NA NA NA NA

rs6052070 3.184599e-01 0.5725346 0.7646316 NA NA NA NA

rs6116135 3.201945e-01 0.5714908 0.7640104 NA NA NA NA

The summary for the SNPs, which show most significant association can be
produced with

> bestHits500 <- descriptives.scan(qts500,top=10)

Summary for top 10 results, sorted by P1df

> bestHits500

Chromosome Position Strand A1 A2 N effB se_effB chi2.1df

rs6039167 20 846271 + G A 120 -5.9451984 0.7731855 59.12420

rs7261762 20 853448 + A G 120 -6.7335160 0.9748760 47.70732

rs511582 20 868752 + A G 120 -0.9872044 0.1883796 27.46290

rs967789 20 2876445 + A G 120 -0.9289317 0.1949364 22.70814

rs642758 20 2831146 + A G 120 -0.9194347 0.1993352 21.27521

rs676749 20 2974069 + A T 120 -0.8711208 0.1900255 21.01517

rs577116 20 2818285 + G A 120 -0.9291733 0.2032178 20.90595

rs570673 20 2819015 + C G 120 -0.8728347 0.1973862 19.55377

rs6112914 20 2048348 + A G 120 -0.6753674 0.1543434 19.14715

rs6106161 20 1995179 + T G 120 -0.6253343 0.1609140 15.10208

P1df Pc1df effAB effBB chi2.2df P2df

rs6039167 1.480274e-14 4.512105e-05 NA NA NA NA

rs7261762 4.948399e-12 2.477531e-04 NA NA NA NA

rs511582 1.601368e-07 5.429559e-03 NA NA NA NA

rs967789 1.885672e-06 1.146299e-02 NA NA NA NA

1 In general the score test may be preferred because it is faster and more robust.
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Figure 9.1: Manhattan plot for 500 directly typed SNPs

rs642758 3.978434e-06 1.439751e-02 NA NA NA NA

rs676749 4.556610e-06 1.500792e-02 NA NA NA NA

rs577116 4.823944e-06 1.527219e-02 NA NA NA NA

rs570673 9.780761e-06 1.897119e-02 NA NA NA NA

rs6112914 1.210181e-05 2.025583e-02 NA NA NA NA

rs6106161 1.018509e-04 3.922563e-02 NA NA NA NA

and the plot of the results with

> plot(qts500)

> abline(h=-log10(5e-8))

(see figure 9.1).
Finally, we can produce descriptive statistics for the SNPs, which demon-

strated genome-wide significance:

> gwsSnps500 <- rownames(bestHits500)[bestHits500$P1df<=6e-8]

> gwsSnps500

[1] "rs6039167" "rs7261762"

> summary(gtdata(df500[,gwsSnps500 ]))

Chromosome Position Strand A1 A2 NoMeasured CallRate Q.2 P.11

rs6039167 20 846271 + G A 120 1 0.012500000 117
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rs7261762 20 853448 + A G 120 1 0.008333333 118

P.12 P.22 Pexact Fmax Plrt

rs6039167 3 0 1 -0.012658228 0.8454919

rs7261762 2 0 1 -0.008403361 0.8968501

Exercise 1.

It is known that rare variation in the presence of outliers can generate spurious
associations. Do you believe this is a true association in this particular case?
What you can do to check whether this is a true association or not?

9.2 Analysis of imputed data with ProbABEL-package

Here, you will analyse imputed data. In the RData directory, you will find the
necessary files: mach1.mldose.fvi and mach1.mldose.fvd (these files represent
mldose data produced by mach1, converted into DatABEL-package format2) and
mach1.out.mlinfo, which contains information for the imputed SNPs generated
in the process of imputations (such as ’Rsq’, etc.).

We will start with producing a phenotypic data file for the use with ProbABEL-package:

> write.table(data.frame(id=idnames(df500), rcT=rcT),

+ file="rcT.PHE", quote=FALSE, row.names=FALSE)

next, try the command ’system("head rcT.PHE")’ to check the few first lines
of the file.

At this moment, leave R (or, rather, start new console!), copy the mach-files
to the working directory with

yourname@server> cp RData/mach1* .

and run ProbABEL-package analysis with

yourname@server> palinear --pheno rcT.PHE --info mach1.out.mlinfo /

--dose mach1.mldose.fvi

Do not forget to check that you start the analysis in right directory, i.e. all files
(rcT.PHE, mach1.out.mlinfo, mach1.mldose.fvi, mach1.mldose.fvd) are present
in the working directory (use the ’ls’ command from the console).

Now, you can return to R and load the analysis results:

> qtsPal <- read.table("regression_add.out.txt", head=T, strings=F)

> qtsPal[1:5,]

name A1 A2 Freq1 MAF Quality Rsq n Mean_predictor_allele

1 rs4814683 T G 0.4921 0.4921 0.7334 0.5650 120 0.492087

2 rs6076506 T G 0.7723 0.2277 0.6511 0.2415 120 0.772271

3 rs6139074 C A 0.3384 0.3384 0.9904 0.9803 120 0.338387

4 rs1418258 T C 0.5009 0.4991 0.7208 0.5474 120 0.500917

5 rs7274499 C A 0.9745 0.0255 0.9505 0.1011 120 0.974450

2using mach2databel
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beta_SNP_add sebeta_SNP_add loglik

1 0.618307 0.269166 -114.266

2 0.722713 0.499781 -115.837

3 0.501472 0.210870 -114.082

4 0.636760 0.273391 -114.194

5 1.348270 2.085770 -116.679

As you see, there is not P -value produced in the ProbABEL-package output,
and we need to compute it:

> qtsPal$Chisq <- (qtsPal$beta/qtsPal$sebeta)^2

> qtsPal$"P-value" <- pchisq(qtsPal$Chisq,1,low=F)

> qtsPal[1:5,]

name A1 A2 Freq1 MAF Quality Rsq n Mean_predictor_allele

1 rs4814683 T G 0.4921 0.4921 0.7334 0.5650 120 0.492087

2 rs6076506 T G 0.7723 0.2277 0.6511 0.2415 120 0.772271

3 rs6139074 C A 0.3384 0.3384 0.9904 0.9803 120 0.338387

4 rs1418258 T C 0.5009 0.4991 0.7208 0.5474 120 0.500917

5 rs7274499 C A 0.9745 0.0255 0.9505 0.1011 120 0.974450

beta_SNP_add sebeta_SNP_add loglik Chisq P-value

1 0.618307 0.269166 -114.266 5.2767671 0.02161184

2 0.722713 0.499781 -115.837 2.0910877 0.14816055

3 0.501472 0.210870 -114.082 5.6554059 0.01740165

4 0.636760 0.273391 -114.194 5.4247924 0.01985280

5 1.348270 2.085770 -116.679 0.4178505 0.51801156

Let us have a look at the top 20 associated SNPs:

> qtsPal[order(qtsPal$Chisq,decreasing=T)[1:20],]

name A1 A2 Freq1 MAF Quality Rsq n Mean_predictor_allele

1009 rs6039167 G A 0.9875 0.0125 0.9995 0.9800 120 0.987537

1022 rs7273309 C T 0.9985 0.0015 0.9970 0.1896 120 0.998550

1026 rs7265788 A G 0.9886 0.0114 0.9929 0.6884 120 0.988546

1025 rs8123328 G T 0.9902 0.0098 0.9964 0.8126 120 0.990246

1024 rs7267882 G A 0.9911 0.0089 0.9986 0.9230 120 0.991167

4009 rs566570 C T 0.5307 0.4693 0.8814 0.8074 120 0.530712

1023 rs7261762 A G 0.9913 0.0087 0.9991 0.9472 120 0.991346

2973 rs6035871 A G 0.9387 0.0613 0.8962 0.2582 120 0.938696

2969 rs6047425 A G 0.9388 0.0612 0.8964 0.2573 120 0.938767

3877 rs2325971 T C 0.5811 0.4189 0.8526 0.7807 120 0.581042

1017 rs553378 G A 0.9987 0.0013 0.9974 0.0005 120 0.998704

3880 rs873711 A G 0.5888 0.4112 0.8597 0.7934 120 0.588750

3886 rs6037425 G C 0.5871 0.4129 0.8651 0.8034 120 0.587125

3958 rs6037443 A G 0.4975 0.4975 0.8918 0.8340 120 0.497446

4027 rs6076466 T C 0.7040 0.2960 0.6570 0.3365 120 0.703938

3884 rs6051434 G T 0.5186 0.4814 0.8427 0.7732 120 0.518621

1018 rs554362 A G 0.6496 0.3504 0.5748 0.2481 120 0.649604

4032 rs2326056 C A 0.7338 0.2662 0.6422 0.2403 120 0.733767

4029 rs11697448 G A 0.7414 0.2586 0.6464 0.2370 120 0.741396
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1560 rs6033304 A C 0.8234 0.1766 0.7408 0.2813 120 0.823429

beta_SNP_add sebeta_SNP_add loglik Chisq P-value

1009 5.98851 0.781065 -92.6360 58.78455 1.759171e-14

1022 38.75330 5.101300 -93.0016 57.71061 3.036607e-14

1026 7.39562 0.977268 -93.1526 57.26929 3.800428e-14

1025 7.12447 0.984098 -94.8389 52.41172 4.500298e-13

1024 6.85041 0.977608 -96.0155 49.10250 2.429299e-12

4009 1.29428 0.185797 -96.2227 48.52651 3.258536e-12

1023 6.80755 0.977629 -96.2366 48.48792 3.323302e-12

2973 4.88622 0.721348 -97.1826 45.88348 1.254997e-11

2969 4.89489 0.722872 -97.1940 45.85251 1.275000e-11

3877 1.29728 0.192726 -97.3933 45.30925 1.682530e-11

1017 728.01600 108.683000 -97.5547 44.87026 2.105310e-11

3880 1.26975 0.192071 -97.9861 43.70316 3.821541e-11

3886 1.25994 0.190625 -97.9929 43.68577 3.855647e-11

3958 1.21385 0.184428 -98.1290 43.31879 4.650954e-11

4027 1.98273 0.339011 -101.6180 34.20579 4.958132e-09

3884 1.14070 0.199652 -102.2370 32.64341 1.107140e-08

1018 2.12435 0.376830 -102.5820 31.78053 1.726140e-08

4032 2.33945 0.427909 -103.3440 29.88992 4.572850e-08

4029 2.36276 0.435773 -103.5440 29.39805 5.893679e-08

1560 2.39452 0.451563 -104.0670 28.11902 1.140790e-07

and produce the plot of the results with

> plot(map5k,-log10(qtsPal[,"P-value"]))

> abline(h=-log10(5e-8))

(here, map5k contains map information for all 5000 SNPs).
To compare with the results obtained using 500 directly typed SNPs only,

we can add the points with

> points(map(qts500),-log10(qts500[,"P1df"]),col="red",pch=19,cex=0.5)

(see figure 9.2).
Now, we can also check different characteristics of the SNPs, which are

claimed to be significant in our analysis:

> gwsSnpsImp <- qtsPal$name[which(qtsPal[,"P-value"]<=5e-8)]

> gwsSnpsImp

[1] "rs6039167" "rs553378" "rs554362" "rs7273309" "rs7261762" "rs7267882"

[7] "rs8123328" "rs7265788" "rs6047425" "rs6035871" "rs2325971" "rs873711"

[13] "rs6051434" "rs6037425" "rs6037443" "rs566570" "rs6076466" "rs2326056"

> mlinfo <- read.table("mach1.out.mlinfo",head=T,strings=F)

> mlinfo[mlinfo$SNP %in% gwsSnpsImp,]

SNP Al1 Al2 Freq1 MAF Quality Rsq

1009 rs6039167 G A 0.9875 0.0125 0.9995 0.9800

1017 rs553378 G A 0.9987 0.0013 0.9974 0.0005

1018 rs554362 A G 0.6496 0.3504 0.5748 0.2481
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Figure 9.2: Manhattan plot for imputed (black empty circles) and 500 directly
typed (red solid circles) SNPs

1022 rs7273309 C T 0.9985 0.0015 0.9970 0.1896

1023 rs7261762 A G 0.9913 0.0087 0.9991 0.9472

1024 rs7267882 G A 0.9911 0.0089 0.9986 0.9230

1025 rs8123328 G T 0.9902 0.0098 0.9964 0.8126

1026 rs7265788 A G 0.9886 0.0114 0.9929 0.6884

2969 rs6047425 A G 0.9388 0.0612 0.8964 0.2573

2973 rs6035871 A G 0.9387 0.0613 0.8962 0.2582

3877 rs2325971 T C 0.5811 0.4189 0.8526 0.7807

3880 rs873711 A G 0.5888 0.4112 0.8597 0.7934

3884 rs6051434 G T 0.5186 0.4814 0.8427 0.7732

3886 rs6037425 G C 0.5871 0.4129 0.8651 0.8034

3958 rs6037443 A G 0.4975 0.4975 0.8918 0.8340

4009 rs566570 C T 0.5307 0.4693 0.8814 0.8074

4027 rs6076466 T C 0.7040 0.2960 0.6570 0.3365

4032 rs2326056 C A 0.7338 0.2662 0.6422 0.2403

Exercise 2.

Please classify the associations obtained into ’true’ and ’false’ (meaning ’I
believe it’ and ’I do not believe’). Of cause ultimate answer is replications.
Still, the object df5k provides genotypes for all 5000 SNPs, directly typed! So,
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Figure 9.3: Cross-plot of the results from analysis of imputed and directly typed
data (see answers to exercises).

you can run analysis, and cross-check which SNPs are confirmed as significant.
Make a cross table: SNPs you thought were truly associated vs. SNPs indeed
associated in directly typed data set.

9.3 Analysis of imputed data with MixABEL-package

In case you are interested in quantitative traits, MixABEL-package provides
much faster and more flexible analysis tools, compared to the ProbABEL-package3.

Here the above analysis is repeated using MixABEL-package.
Load necessary libraries:

> library(DatABEL)

> library(MixABEL)

MixABEL v 0.1-2 (November 23, 2012) loaded

Load the genotypic data:

> imp5k <- databel("mach1.mldose")

Run analysis and look up 10 top results:

3However, at the moment MixABEL-package misses functionality to analyse binary and
time-till-event traits
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> qtsImp <- GWFGLS(rcT~SNP,geno=imp5k,data=NULL)

> qtsImp[order(qtsImp[,"Chisq"],decreasing=T)[1:10],]

n Chisq df P-value beta_SNP se_SNP mean_SNP

rs6039167 120 58.78462 1 1.759110e-14 5.988511 0.7810647 1.975075

rs7273309 120 57.71070 1 3.036458e-14 38.753300 5.1012957 1.997100

rs7265788 120 57.26926 1 3.800491e-14 7.395619 0.9772682 1.977092

rs8123328 120 52.41165 1 4.500458e-13 7.124468 0.9840984 1.980492

rs7267882 120 49.10249 1 2.429317e-12 6.850411 0.9776083 1.982333

rs566570 120 48.52652 1 3.258526e-12 1.294281 0.1857972 1.061425

rs7261762 120 48.48790 1 3.323324e-12 6.807552 0.9776294 1.982692

rs6035871 120 45.88351 1 1.254980e-11 4.886221 0.7213479 1.877392

rs6047425 120 45.85245 1 1.275033e-11 4.894889 0.7228723 1.877533

rs2325971 120 45.30891 1 1.682820e-11 1.297276 0.1927261 1.162083

Look up the information for SNPs with P -value less than 6e− 8:

> #plot(map5k,-log10(qtsImp[,"P-value"]))

> #abline(h=-log10(5e-8))

> gwsSnpsImp <- rownames(qtsImp)[which(qtsImp[,"P-value"]<=6e-8)]

> mlinfo <- read.table("mach1.out.mlinfo",head=T,strings=F)

> mlinfo[mlinfo$SNP %in% gwsSnpsImp,]

SNP Al1 Al2 Freq1 MAF Quality Rsq

1009 rs6039167 G A 0.9875 0.0125 0.9995 0.9800

1017 rs553378 G A 0.9987 0.0013 0.9974 0.0005

1018 rs554362 A G 0.6496 0.3504 0.5748 0.2481

1022 rs7273309 C T 0.9985 0.0015 0.9970 0.1896

1023 rs7261762 A G 0.9913 0.0087 0.9991 0.9472

1024 rs7267882 G A 0.9911 0.0089 0.9986 0.9230

1025 rs8123328 G T 0.9902 0.0098 0.9964 0.8126

1026 rs7265788 A G 0.9886 0.0114 0.9929 0.6884

2969 rs6047425 A G 0.9388 0.0612 0.8964 0.2573

2973 rs6035871 A G 0.9387 0.0613 0.8962 0.2582

3877 rs2325971 T C 0.5811 0.4189 0.8526 0.7807

3880 rs873711 A G 0.5888 0.4112 0.8597 0.7934

3884 rs6051434 G T 0.5186 0.4814 0.8427 0.7732

3886 rs6037425 G C 0.5871 0.4129 0.8651 0.8034

3958 rs6037443 A G 0.4975 0.4975 0.8918 0.8340

4009 rs566570 C T 0.5307 0.4693 0.8814 0.8074

4027 rs6076466 T C 0.7040 0.2960 0.6570 0.3365

4029 rs11697448 G A 0.7414 0.2586 0.6464 0.2370

4032 rs2326056 C A 0.7338 0.2662 0.6422 0.2403

9.4 Answers to exercises

Answer (Ex. 1) — Firstly, you can check (by producing a cross-plot of geno-
type vs. phenotype) if association is indeed due to extreme phenotypic out-
liers. A related question is whether the distribution is skewed. Additionally, a
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permutation-based test can help establishing correct p-value, taking into account
the nature of the data in question.
However, to give an ultimate answer, a replication study is needed, in which
these rare SNPs are to be typed in a large independent sample.

Answer (Ex. 2) — Here is the sequence of commands leading you to the an-
swer:

> qts5k <- mlreg(rcT~1,df5k)

> bestHits5k <- descriptives.scan(qts5k,top=20)

Summary for top 20 results, sorted by P1df

> bestHits5k

Chromosome Position Strand A1 A2 N effB se_effB chi2.1df

rs566570 20 2965113 + T C 120 1.341584 0.1585342 71.61267

rs6039167 20 846271 + G A 120 -5.945198 0.7731855 59.12420

rs6037443 20 2909408 + G A 120 1.194178 0.1628897 53.74655

rs7261762 20 853448 + A G 120 -6.733516 0.9748760 47.70732

rs554362 20 850002 + A G 120 -5.431215 0.8045925 45.56613

rs2104741 20 787070 + G A 120 -9.203756 1.3888630 43.91485

rs7273309 20 853154 + C T 120 -9.203756 1.3888630 43.91485

rs7267882 20 853785 + G A 120 -9.203756 1.3888630 43.91485

rs8123328 20 855045 + G T 120 -9.203756 1.3888630 43.91485

rs7265788 20 855426 + A G 120 -9.203756 1.3888630 43.91485

rs7263171 20 855655 + C T 120 -9.203756 1.3888630 43.91485

rs6110342 20 1458950 + T G 120 -9.203756 1.3888630 43.91485

rs6105340 20 1493635 + G A 120 -9.203756 1.3888630 43.91485

rs11905071 20 1557640 + T C 120 -9.203756 1.3888630 43.91485

rs6080013 20 1590861 + G A 120 -9.203756 1.3888630 43.91485

rs6074978 20 1595216 + T C 120 -9.203756 1.3888630 43.91485

rs2325971 20 2774477 + T C 120 -1.055991 0.1697536 38.69752

rs873711 20 2775468 + A G 120 -1.055991 0.1697536 38.69752

rs6037425 20 2785379 + G C 120 -1.055991 0.1697536 38.69752

rs6051434 20 2781237 + T G 120 0.938854 0.1769196 28.16076

P1df Pc1df effAB effBB chi2.2df P2df

rs566570 2.618695e-17 5.551496e-06 NA NA NA NA

rs6039167 1.480274e-14 3.663781e-05 NA NA NA NA

rs6037443 2.280947e-13 8.301445e-05 NA NA NA NA

rs7261762 4.948399e-12 2.090409e-04 NA NA NA NA

rs554362 1.475718e-11 2.904523e-04 NA NA NA NA

rs2104741 3.429767e-11 3.745369e-04 NA NA NA NA

rs7273309 3.429767e-11 3.745369e-04 NA NA NA NA

rs7267882 3.429767e-11 3.745369e-04 NA NA NA NA

rs8123328 3.429767e-11 3.745369e-04 NA NA NA NA

rs7265788 3.429767e-11 3.745369e-04 NA NA NA NA

rs7263171 3.429767e-11 3.745369e-04 NA NA NA NA

rs6110342 3.429767e-11 3.745369e-04 NA NA NA NA

rs6105340 3.429767e-11 3.745369e-04 NA NA NA NA

rs11905071 3.429767e-11 3.745369e-04 NA NA NA NA

rs6080013 3.429767e-11 3.745369e-04 NA NA NA NA

rs6074978 3.429767e-11 3.745369e-04 NA NA NA NA
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rs2325971 4.948386e-10 8.395801e-04 NA NA NA NA

rs873711 4.948386e-10 8.395801e-04 NA NA NA NA

rs6037425 4.948386e-10 8.395801e-04 NA NA NA NA

rs6051434 1.116452e-07 4.389549e-03 NA NA NA NA

> plot(qts5k)

> abline(h=-log10(5e-8))

> gwsSnps5k <- rownames(bestHits5k)[bestHits5k$P1df<=6e-8]

> summary(gtdata(df5k[,gwsSnps5k ]))

Chromosome Position Strand A1 A2 NoMeasured CallRate Q.2

rs566570 20 2965113 + T C 120 1 0.495833333

rs6039167 20 846271 + G A 120 1 0.012500000

rs6037443 20 2909408 + G A 120 1 0.491666667

rs7261762 20 853448 + A G 120 1 0.008333333

rs554362 20 850002 + A G 120 1 0.012500000

rs2104741 20 787070 + G A 120 1 0.004166667

rs7273309 20 853154 + C T 120 1 0.004166667

rs7267882 20 853785 + G A 120 1 0.004166667

rs8123328 20 855045 + G T 120 1 0.004166667

rs7265788 20 855426 + A G 120 1 0.004166667

rs7263171 20 855655 + C T 120 1 0.004166667

rs6110342 20 1458950 + T G 120 1 0.004166667

rs6105340 20 1493635 + G A 120 1 0.004166667

rs11905071 20 1557640 + T C 120 1 0.004166667

rs6080013 20 1590861 + G A 120 1 0.004166667

rs6074978 20 1595216 + T C 120 1 0.004166667

rs2325971 20 2774477 + T C 120 1 0.470833333

rs873711 20 2775468 + A G 120 1 0.470833333

rs6037425 20 2785379 + G C 120 1 0.470833333

P.11 P.12 P.22 Pexact Fmax Plrt

rs566570 33 55 32 0.3648758 0.083269672 0.3614010

rs6039167 117 3 0 1.0000000 -0.012658228 0.8454919

rs6037443 35 52 33 0.1467972 0.133092526 0.1442654

rs7261762 118 2 0 1.0000000 -0.008403361 0.8968501

rs554362 117 3 0 1.0000000 -0.012658228 0.8454919

rs2104741 119 1 0 1.0000000 -0.004184100 0.9484250

rs7273309 119 1 0 1.0000000 -0.004184100 0.9484250

rs7267882 119 1 0 1.0000000 -0.004184100 0.9484250

rs8123328 119 1 0 1.0000000 -0.004184100 0.9484250

rs7265788 119 1 0 1.0000000 -0.004184100 0.9484250

rs7263171 119 1 0 1.0000000 -0.004184100 0.9484250

rs6110342 119 1 0 1.0000000 -0.004184100 0.9484250

rs6105340 119 1 0 1.0000000 -0.004184100 0.9484250

rs11905071 119 1 0 1.0000000 -0.004184100 0.9484250

rs6080013 119 1 0 1.0000000 -0.004184100 0.9484250

rs6074978 119 1 0 1.0000000 -0.004184100 0.9484250

rs2325971 38 51 31 0.1032427 0.147097763 0.1065638

rs873711 38 51 31 0.1032427 0.147097763 0.1065638

rs6037425 38 51 31 0.1032427 0.147097763 0.1065638

> plot(-log10(qts5k[,"P1df"]),-log10(qtsPal[,"P-value"]))
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> abline(h=-log10(5e-8))

> abline(v=-log10(5e-8))

> directNotImp <- gwsSnps5k[!(gwsSnps5k %in% gwsSnpsImp)]

> directNotImp

[1] "rs2104741" "rs7263171" "rs6110342" "rs6105340" "rs11905071"

[6] "rs6080013" "rs6074978"

> imputeNotDir <- gwsSnpsImp[!(gwsSnpsImp %in% gwsSnps5k)]

> imputeNotDir

[1] "rs553378" "rs6047425" "rs6035871" "rs6051434" "rs6076466" "rs2326056"

> inBoth <- gwsSnps5k[gwsSnps5k %in% gwsSnpsImp]

> inBoth

[1] "rs566570" "rs6039167" "rs6037443" "rs7261762" "rs554362" "rs7273309"

[7] "rs7267882" "rs8123328" "rs7265788" "rs2325971" "rs873711" "rs6037425"

> summary(gtdata(df5k[,directNotImp]))

Chromosome Position Strand A1 A2 NoMeasured CallRate Q.2

rs2104741 20 787070 + G A 120 1 0.004166667

rs7263171 20 855655 + C T 120 1 0.004166667

rs6110342 20 1458950 + T G 120 1 0.004166667

rs6105340 20 1493635 + G A 120 1 0.004166667

rs11905071 20 1557640 + T C 120 1 0.004166667

rs6080013 20 1590861 + G A 120 1 0.004166667

rs6074978 20 1595216 + T C 120 1 0.004166667

P.11 P.12 P.22 Pexact Fmax Plrt

rs2104741 119 1 0 1 -0.0041841 0.948425

rs7263171 119 1 0 1 -0.0041841 0.948425

rs6110342 119 1 0 1 -0.0041841 0.948425

rs6105340 119 1 0 1 -0.0041841 0.948425

rs11905071 119 1 0 1 -0.0041841 0.948425

rs6080013 119 1 0 1 -0.0041841 0.948425

rs6074978 119 1 0 1 -0.0041841 0.948425

> mlinfo[which(mlinfo$SNP %in% directNotImp),]

SNP Al1 Al2 Freq1 MAF Quality Rsq

871 rs2104741 G A 0.9562 0.0438 0.9145 0.0679

1027 rs7263171 C T 0.8639 0.1361 0.9246 0.7898

1978 rs6110342 T G 0.9160 0.0840 0.8472 0.1967

2028 rs6105340 G A 0.8790 0.1210 0.7849 0.2076

2064 rs11905071 T C 0.8846 0.1154 0.7989 0.1890

2111 rs6080013 G A 0.9577 0.0423 0.9342 0.3869

2118 rs6074978 T C 0.9576 0.0424 0.9340 0.3851

> summary(gtdata(df5k[,imputeNotDir]))

Chromosome Position Strand A1 A2 NoMeasured CallRate Q.2 P.11

rs553378 20 849882 + G A 120 1 0.02500000 114

rs6047425 20 2141014 + A G 120 1 0.07083333 104

rs6035871 20 2143364 + A G 120 1 0.07083333 104

rs6051434 20 2781237 + T G 120 1 0.47500000 37

rs6076466 20 2982048 + T C 120 1 0.22916667 71
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rs2326056 20 2985607 + C A 120 1 0.22500000 72

P.12 P.22 Pexact Fmax Plrt

rs553378 6 0 1.0000000 -0.025641026 0.6948707

rs6047425 15 1 0.4561335 0.050382485 0.6092978

rs6035871 15 1 0.4561335 0.050382485 0.6092978

rs6051434 52 31 0.1473878 0.131161236 0.1502658

rs6076466 43 6 1.0000000 -0.014250614 0.8754486

rs2326056 42 6 1.0000000 -0.003584229 0.9686478

> mlinfo[which(mlinfo$SNP %in% imputeNotDir),]

SNP Al1 Al2 Freq1 MAF Quality Rsq

1017 rs553378 G A 0.9987 0.0013 0.9974 0.0005

2969 rs6047425 A G 0.9388 0.0612 0.8964 0.2573

2973 rs6035871 A G 0.9387 0.0613 0.8962 0.2582

3884 rs6051434 G T 0.5186 0.4814 0.8427 0.7732

4027 rs6076466 T C 0.7040 0.2960 0.6570 0.3365

4032 rs2326056 C A 0.7338 0.2662 0.6422 0.2403

> summary(gtdata(df5k[,inBoth]))

Chromosome Position Strand A1 A2 NoMeasured CallRate Q.2 P.11

rs566570 20 2965113 + T C 120 1 0.495833333 33

rs6039167 20 846271 + G A 120 1 0.012500000 117

rs6037443 20 2909408 + G A 120 1 0.491666667 35

rs7261762 20 853448 + A G 120 1 0.008333333 118

rs554362 20 850002 + A G 120 1 0.012500000 117

rs7273309 20 853154 + C T 120 1 0.004166667 119

rs7267882 20 853785 + G A 120 1 0.004166667 119

rs8123328 20 855045 + G T 120 1 0.004166667 119

rs7265788 20 855426 + A G 120 1 0.004166667 119

rs2325971 20 2774477 + T C 120 1 0.470833333 38

rs873711 20 2775468 + A G 120 1 0.470833333 38

rs6037425 20 2785379 + G C 120 1 0.470833333 38

P.12 P.22 Pexact Fmax Plrt

rs566570 55 32 0.3648758 0.083269672 0.3614010

rs6039167 3 0 1.0000000 -0.012658228 0.8454919

rs6037443 52 33 0.1467972 0.133092526 0.1442654

rs7261762 2 0 1.0000000 -0.008403361 0.8968501

rs554362 3 0 1.0000000 -0.012658228 0.8454919

rs7273309 1 0 1.0000000 -0.004184100 0.9484250

rs7267882 1 0 1.0000000 -0.004184100 0.9484250

rs8123328 1 0 1.0000000 -0.004184100 0.9484250

rs7265788 1 0 1.0000000 -0.004184100 0.9484250

rs2325971 51 31 0.1032427 0.147097763 0.1065638

rs873711 51 31 0.1032427 0.147097763 0.1065638

rs6037425 51 31 0.1032427 0.147097763 0.1065638

> mlinfo[which(mlinfo$SNP %in% inBoth),]

SNP Al1 Al2 Freq1 MAF Quality Rsq

1009 rs6039167 G A 0.9875 0.0125 0.9995 0.9800

1018 rs554362 A G 0.6496 0.3504 0.5748 0.2481

1022 rs7273309 C T 0.9985 0.0015 0.9970 0.1896
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1023 rs7261762 A G 0.9913 0.0087 0.9991 0.9472

1024 rs7267882 G A 0.9911 0.0089 0.9986 0.9230

1025 rs8123328 G T 0.9902 0.0098 0.9964 0.8126

1026 rs7265788 A G 0.9886 0.0114 0.9929 0.6884

3877 rs2325971 T C 0.5811 0.4189 0.8526 0.7807

3880 rs873711 A G 0.5888 0.4112 0.8597 0.7934

3886 rs6037425 G C 0.5871 0.4129 0.8651 0.8034

3958 rs6037443 A G 0.4975 0.4975 0.8918 0.8340

4009 rs566570 C T 0.5307 0.4693 0.8814 0.8074



Chapter 10

Meta-analysis of GWA
scans

10.1 Standard meta-analysis methods

Imagine you are interested in the effect of a certain polymorphism onto a par-
ticular disease. After scanning literature, you find some studies that implicate
certain allele as significantly increasing the risk of the disease, but you will typ-
ically find also that other studies were inconclusive (no significant association),
and that even some of the studies implicated the same allele as ”protective”.
Your gut feeling may be that the allele is indeed the risk one, because you feel
that the studies contradicting to this hypothesis were based on small number of
subjects; however, how do you quantify this feeling? In this situation you need
to perform meta-analysis of available data to come up with the joint effect size
estimate and P-value, as based on all available data.

Let us first consider a situation when you are interested in the effect of the
allele on a quantitative phenotype, expressed as a coefficient of regression of the
trait onto the number of this allele in the genotype. Under a favorable scenario,
from every individual study you would know the estimate of this regression
coefficient, and the standard error of the estimate (or, equivalently, the P−value
or the test statistics value for association).

One of approaches frequently used in meta-analysis of the data coming from
a number of independent studies is the inverse variance method. In essence,
this method is equivalent to combining likelihoods coming from separate studies,
using quadratic approximation. Denote coefficients of regression estimated in
N studies as βi, and associated squared standard errors of the estimates as s2i
where i ∈ 1, 2, ..., N . Note that the regression coefficient should be reported on
the same scale, e.g. centimeters, meters, or using observations reported on the
standard normal scale. Define weights for individual studies as

wi =
1

s2i

Then the pooled estimate of the regression coefficient is

β =

∑N
i=1 wiβi∑N
i=1 wi

189
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As you can see, the weights have straightforward interpretation: the bigger
the weight of the study (meaning the small is the standard error in the study),
the larger is the contribution from this study onto the pooled estimate.

The standard error of the pooled estimate is computed as

s2 =
1∑N
i=1 wi

and the χ2-test for association is computed in standard manner as

T 2 =
β2

s2
=

(∑N
i=1 wiβi

)2
∑N
i=1 wi

or, alternatively, the Z-test is

Z =
β

s
=

∑N
i=1 wiβi√∑N
i=1 wi

Let us try to do meta-analysis using the inverse variance pooling method.
Imagine we have information from four different studies reporting effect and the
standard error of the same allele:

Table 10.1: Estimated regression coefficients from four studies
Study n β sβ χ2

1 225 0.16 0.07 5.224
2 560 0.091 0.042 4.694
3 437 0.072 0.048 2.25
4 89 -0.03 0.12 0.062
Total 1311 ? ? ?

Let us try to access the joint significance of the association using these data.
First, let us define a vector of regression coefficients and squared standard errors:

> beta <- c(0.16,0.091,0.072,-0.03)

> s <- c(0.07,0.042,0.048,0.12)

> s2 <- s*s

> s2

[1] 0.004900 0.001764 0.002304 0.014400

Compute the weight for individual studies as

> w <- 1/s2

> w

[1] 204.08163 566.89342 434.02778 69.44444

Estimate pooled regression coefficient as

> pbeta <- sum(w*beta)/sum(w)

> pbeta
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[1] 0.08898527

and pooled squared standard error as

> ps2 <- 1/sum(w)

> ps2

[1] 0.0007846539

To access significance of association in meta-analysis, let us compute χ2 test
statistics and the P − value with

> pchi2 <- pbeta*pbeta/ps2

> pchi2

[1] 10.09155

> ppvalue <- 1. - pchisq(pchi2,1)

> ppvalue

[1] 0.001489504

We conclude that there is a significant association in meta-analysis.
There is an important effect which should be considered when doing meta-

analysis of published data. Given numerous polymorphisms available in human
genome, a particular polymorphism usually becomes a focus of interest only
when it was shown to be significantly associated in some study which reports it.
Put it other way around: only when a significant association was detected and
reported, more studies are likely to be performed on the same polymorphism.
This first report, however, is not guaranteed to demonstrate a true association:
it may well report a false-positive, or, even in presence of association, it is likely
to over-estimate the effect of the polymorphism. Thus there is a positive bias
in literature reports, and this bias is particularly strong for the first report, a
phenomenon frequently referenced to as ”champion’s” or ”winner’s curse”.

The observations we have just considered are quite typical in that the first
study, where the association was originally discovered, reports the biggest effect
and most significant effect, while the follow-up studies suggest smaller effect.

Therefore, when you meta-analyse data from publications it is always good
idea to exclude the first report (in case it is positive – and it is always positive!)
and check if significant association is still observed. Let us try to do that:

> beta <- beta[2:4]

> s2 <- s2[2:4]

> w <- w[2:4]

> pbeta <- sum(w*beta)/sum(w)

> pbeta

[1] 0.07544522

> ps2 <- 1/sum(w)

> ps2

[1] 0.0009342602
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> pchi2 <- pbeta*pbeta/ps2

> pchi2

[1] 6.092501

> ppvalue <- 1. - pchisq(pchi2,1)

> ppvalue

[1] 0.01357568

Indeed, when the first ”champion” report is excluded, the overall evidence is
decreased and results become less significant, though still pointing to the same
direction.

When binary traits are studied, and results are reported as Odds Ratios with
P − values, it is also possible to apply inverse variance method. For this, you
need to transform your Odds Ratios using natural logarithm, and, on this scale,
estimate the standard error. Generic inverse variance pooling may be applied
to the data transformed this way; the final results are back-transformed onto
Odds Ratio scale using exponentiation.

Let us consider a simple example. Let Odds Ratios and χ2 test statistics
values coming from four studies of a binary phenotype are as following: θ1 = 1.5
(χ2 = 5.1), θ2 = 1.3 (χ2 = 2.2), θ3 = 0.9 (χ2 = 0.5), θ4 = 1.2 (χ2 = 3.1).

Let us first transform the Odds Ratio to the logarithmic scale with

> or <- c(1.5,1.3,0.9,1.2)

> lnor <- log(or)

> lnor

[1] 0.4054651 0.2623643 -0.1053605 0.1823216

To compute standard errors from known χ2 values, one can use simple relation

χ2 =
β2

s2

and thus

s2 =
β2

χ2

Thus to compute the square standard errors corresponding to the log-Odds
Ratio, we can use

> chi2or <- c(5.1,2.2,0.5,3.1)

> s2lnor <- lnor*lnor/chi2or

> s2lnor

[1] 0.03223568 0.03128864 0.02220168 0.01072295

Now we can combine log-Odds Ratios and corresponding standard errors
using inverse variance method:

> w <- 1/s2lnor

> plnor <- sum(w*lnor)/sum(w)

> plnor
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[1] 0.1650462

> ps2 <- 1/sum(w)

> ps2

[1] 0.004968165

> pchi2 <- plnor*plnor/ps2

> pchi2

[1] 5.482958

> ppval <- 1.-pchisq(pchi2,1)

> ppval

[1] 0.01920274

And the corresponding estimate of pooled Odds Ratio is

> exp(plnor)

[1] 1.179448

and 95% confidence interval is

> exp(plnor-1.96*sqrt(ps2))

[1] 1.02726

> exp(plnor+1.96*sqrt(ps2))

[1] 1.354181

Some times, effects are reported on different scales, and/or there may be
suspect that these effects are not translatable across studies because of the
differences in experimental design or for some other reasons. In this case, it may
be better to poll the data without use of the effect estimate in exact manner,
based only on the sign of association and its significance. This can be done by
pooling Z-score values. Z-score refers to the test statistics, which has standard
normal distribution under the null and can be derived e.g. by dividing estimate
of the regression coefficient onto its standard error:

Zi =
βi
si

The Z-score pooling methods can be derived from the inverse variance pool-
ing by exploiting the fact that generally standard error of the estimate is pro-
portional to 1/

√
n, where n is the number of observations used for estimation.

Therefore individual scores are assigned weights which are proportional to the
square root of number of independent observations used in individual study,
wi =

√
ni. The pooled Z-score statistics is computed as

Z =

∑N
i=0 wiZi√∑N
i=0 w

2
i

We can now repeat the analysis of our first data set using Z-score pooling
method. First, our data from table 10.1 are
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> n <- c(225,560,437,89)

> beta <- c(0.16,0.091,0.072,-0.03)

> s <- c(0.07,0.042,0.048,0.12)

The Z-scores and weights are are:

> z <- beta/s

> z

[1] 2.285714 2.166667 1.500000 -0.250000

> w <- sqrt(n)

> w

[1] 15.000000 23.664319 20.904545 9.433981

The pooled estimate of Z-score is

> pz <- sum(w*z)/sqrt(sum(w^2))

> pz

[1] 3.163875

and corresponding P − value is

> 1.-pchisq(pz*pz,1)

[1] 0.001556839

which is almost the same P − value we have obtained previously using the
inverse variance method. Note, however, that now we do not know the ”pooled”
estimate of the regression coefficient.

Other important aspects of meta-analysis, such as heterogeneity, and a wide
range of methods different from the inverse variance and Z-score based methods
are not covered here, and we refer the reader to more epidemiologically-oriented
literature for a better review.

10.2 Exercise: meta-analysis of literature data

In this exercise, you will perform meta-analysis of results collected from liter-
ature. These results resemble these obtained for association analysis between
Pro12Ala polymorphism of the PPAR-GenABEL-packagemma gene and type 2
diabetes. The data collected from literature are presented in the table 10.2.

As you can see, only the original study report significant association, while
other four are insignificant and one point in opposite direction.

Answer the following questions:

Exercise 8 Perform meta-analysis of the data presented in table 10.2. Which
allele is the risk one? Is this risk significant? What is pooled Odds Ratio and
95% confidence interval? Do analysis using at least two methods. Which method
is better (best) in this situation? Why?

Exercise 9 Perform meta-analsys excluding the original report (study 1). Is
there still significant association between Pro12Ala and diabetes?
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Table 10.2: Summary of six studies of association between T2D and Pro12Ala
polymorphism of the PPAR-GenABEL-packagemma gene. n: number of sub-
jects; effective allele: the allele for which the OR was estimated.

Study Effective allele n ORE P − value
1 Ala 221 0.67 0.013
2 Pro 306 0.93 0.60
3 Pro 71 1.08 0.84
4 Ala 164 0.83 0.40
5 Pro 242 1.22 0.25
6 Pro 471 1.23 0.07

10.3 Reporting GWA results for future meta-
analysis

In this section, we will discuss specifics of GWA analysis when meta-analysis
is aimed at later stage. In order to perform meta-analysis at later stage, using
either inverse variance or Z-score based method, you generally need to report
only effect estimates, standard errors of The estimates (or, equivalently, P −
values or test statistics values), and number of observations used for estimation.

It is also clear that it is crucial to know for which allele the effect is reported,
and this is the point where meta-analysis of genetic data may be very confus-
ing. Generally, one may think that reporting what couple of nucleotide bases
correspond to the polymorphism under the study and defining what allele was
used as reference in the regression model may be enough. This, however, is not
true for certain class of polymorphisms and may be a source of great confusion.

Consider a DNA molecule; as you know it is made of two complementary
strands (forward or ”+” and reverse or ”-”). As you may guess, depending on the
strand, what is an ”A/G” polymorphism when reported on ”+” strand becomes
”T/C” polymorphism on the ”-” strand (using complementarity rule A<->T
and G<->C). This is not a big problem for most of the polymorphism classes,
because if say you know that for a first study β1 is reported for the ”G” allele of
the ”A/G” polymorphism and in the second study β2 is the estimate of the effect
”C” allele of the same polymorphism, but coded as ”T/C” (thus other strand),
you can easily spot that and say the ”C” is the same as ”G” in this situation,
and pool the two betas straightforwardly.

However, for two types of polymorphisms, ”A/T” and ”G/C”, where you can
not get away without knowing what the strand was: what is reported as the
effect of ”T” in ”A/T” polymorphism in study one; and seemingly corresponding
effect of ”T” in ”A/T” polymorphism in study two may be apparently reports for
two opposite alleles, if strands used for reporting in two studies were different.

The story may become even more complex, because the forward/reverse
orientation depends on the genomic build1.

Thus if you want to pool your results with the results of others, there are
quite a few SNP characteristics which are absolutely crucial to report, namely,
the nucleotide bases describing the polymorphism, with indication which one was
used as reference, and which one as ”effective”, strand, genomic build, and only

1 There is alternative, top/bottom, strand designation, which does not depend on genomic
build. However, it is not always used.
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than the effect estimate, standard error of the effect, and number of observations
used to do estimation.

Other characteristics which are also recommended for reporting because they
describe the quality characteristics of the sample and/or provide redundant in-
formation, which is good for double checks. Such characteristics include: fre-
quency of the effective or reference allele, call rate, P-value for Hardy-Weinberg
equlibrium and may be some parameter describing what is the direction of de-
viation from HWE (e.g. Fmax). When reporting results for imputed SNPs,
more quality control characteristics should be included, suh as average maximal
posterior probability, R2, etc.

Let us start with arranging two data sets which could then be used for meta-
analysis. Basically, we will use cleaned data from the GWA exercise you did in
section 5 (”Genome-wide association analysis”, page 101), and split that is two
parts.

If you did not do this yet, start R and load GenABEL-package library, which
you will need it to work with GWA-data

> library(GenABEL)

Load the data with

> load("data2.RData")

and then split it in two parts:

> nids(data2)

[1] 124

> mdta1 <- data2[1:40,]

> mdta2 <- data2[41:nids(data2),]

We will analyse body mass index. If you pooling results of analysis of stud-
ies which are designed in approximately the same manner, you may think of
reporting the effect estimates on the same scale and use of the inverse variance
method for meta-analysis.

However, in meta-analysis of multiple data sets different individual studies
are likely to assess different population, will use different designs, measure dif-
ferent covariates, and so on. Therefore you should think of some standardisation
of the outcome variable (or apply Z-score method).

Therefore for the purpose of future meta-analysis, it becomes conventional
to analyse pre-adjusted data which are scaled to Standard Normal (mean of zero
and variance of unity). Note that this argument applies only to meta-analysis –
you may and should report effects on the original scale (e.g. in centimeters and
grams) in analysis of individual studies, in order to have better interpretability.

Moreover, in meta-analysis you heavily rely on the large numbers approxima-
tion when estimating P−values; while for individual study you can always apply
empirical, e.g. permutation-based, procedures to derive the correct P − value
whatever is the distribution of the trait, in meta-analysis the Normality assump-
tion becomes crucial, and you do not want few outliers spoiling your results by
screwing up P − values. Therefore some transformation improving normality is
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desirable. Note that transformation to Standard Normal does not improve the
fit to normality; to do that other transformation should be applied. Probably
the most famous transformations are log- and square root ones, then one may
think of Box-Cox transformation. At the same time there is a transformation,
called a Rank Transformation ro Normality which guarantees perfect fit to Nor-
mal in absence of heavy ties2. We advocate the use of Rank Transformation to
Normal for meta-analysis purposes.

GenABEL-package implements the ztransform function for the purposes of
Z-transformation. This function takes two (actually three – see help for details)
arguments: formula (or just the variable name) and data. ztransform function
will perform (generalised) linear regression using the specified formula, and will
transform the residuals from analysis onto Z-scale by subtracting the mean and
division by the standard deviation.

Let us consider what this function does practically. Let us first transform
BMI from the first set without using covariates:

> zbmi0 <- ztransform(bmi,mdta1)

The histogram of the transformed variable and scatter-plot of raw against trans-
formed BMI is given at figure 10.1, column 1. Note that the fit to Normality
is not improved by this transformation; with the original BMI, the Shapiro test
for deviation from normality gives

> shapiro.test(phdata(mdta1)$bmi)

Shapiro-Wilk normality test

data: phdata(mdta1)$bmi

W = 0.9328, p-value = 0.0199

with identical results from the transformed variable:

> shapiro.test(zbmi0)

Shapiro-Wilk normality test

data: zbmi0

W = 0.9328, p-value = 0.0199

This is quite natural: as you can note from scatter-plot in column 1 of figure
10.1, only the centering and the spread of the scales are different for X (original
BMI) and Y (x0), otherwise there is an exact linear correspondence between the
two.

We can also do transformation using sex and age-adjusted residuals with

> zbmi1 <- ztransform(bmi~sex+age,mdta1)

The scatter-plot of raw against transformed BMI is given at figure 10.1, column
2. Note that this transformation may slightly change the fit to Normal, which
happens because we factor out the effects of sex and age:

> shapiro.test(zbmi1)

2 Ties are generated by the subjects with exactly the same trait values
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Shapiro-Wilk normality test

data: zbmi1

W = 0.9263, p-value = 0.01224

From the scatter-plot in column 2 of figure 10.1, it is quite clear what happens:
the residuals from linear regression are not corresponding to the original BMI
in exact linear manner.

A similar function, which performs rank-transformation to normality, is
named rntransform. For example if we want to adjust BMI for sex and age
and rank-transform the residuals to Normal, we can use

> rnbmi1 <- rntransform(bmi~sex+age,mdta1)

This transformation, however, indeed improves the fit to Normal:

> shapiro.test(rnbmi1)

Shapiro-Wilk normality test

data: rnbmi1

W = 0.999, p-value = 1

In essence, the P − value of 1 means perfect fit to Normal – and this is what
should have occurred when this transformation is used on the data without ties.
Perfectly Normal distribution of the transformed trait may be enjoyed at the
histogram presented at column 3 of figure 10.1.

Let us analyse Rank-Normal-transformed, sex and age-adjusted BMI in the
two data sets, using qtscore function. Analysis of the first study is done with

> qts1 <- qtscore(rnbmi1,mdta1)

and analysis of the second study is done with

> zbmi2 <- ztransform(bmi~sex+age,mdta2)

> qts2 <- qtscore(zbmi2,mdta2)

The analysis looks very simple – is not it? However, the real difficulty did
not start yet: now we need to extract coding, reference allele, strand, etc. –
otherwise we can not do right meta-analysis later on!

Let us assume that you want to summarise the GW results from additive 1
d.f. test using following variables (as, e.g., requested by consortium):

• name: SNP name

• chromosome: chromosome number

• position: physical position of the SNP

• refallele: reference allele

• codedallele: coded (effect) allele

• strand: strand

• refallfreq: frequency of the reference allele
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Figure 10.1: Histogram of transformed BMI and scatter-plots of the raw BMI
against transformed BMI. Column 1: Z-transformation without covariates. Col-
umn 2: Z-transformation with adjustment for age and sex. Column 3: Rank-
transformation to normality, after adjustment for sex and age.

• n: number of people with data available for this SNP test

• beta: estimate of the effect of the allele

• se beta: standard error of the effect estimate

• p: P-value for the test

• p corr: corrected P-value (we will use Genomic Control)

• call: SNP call rate

• phwe: P -value from the exact test for HWE

Let us look what we get as an output from qtscore analysis:

> results(qts1)[1:2,]

Chromosome Position Strand A1 A2 N effB se_effB chi2.1df

rs1646456 1 653 + C G 40 0.1768955 0.2560635 0.4772414

rs4435802 1 5291 + C A 40 -0.4064900 0.4095768 0.9849838

P1df effAB effBB chi2.2df P2df Pc1df

rs1646456 0.4896745 0.09703712 0.4909062 0.6323627 0.7289272 0.4896745

rs4435802 0.3209715 -0.40649004 NA 0.9849838 0.3209715 0.3209715
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You can see that most infromation is already present in the output, though
called using names which are different from these requested. However, we miss
reference allele frequency, SNP call rate and P -value from the Hardy-Weinberg
equilibrium test. These however can be computed using the summary function:

> # for data part 1:

> sum1 <- summary(gtdata(mdta1))

> sum1[1:2,]

Chromosome Position Strand A1 A2 NoMeasured CallRate Q.2 P.11 P.12

rs1646456 1 653 + C G 40 1 0.3375 16 21

rs4435802 1 5291 + C A 40 1 0.0875 33 7

P.22 Pexact Fmax Plrt

rs1646456 3 0.4775382 -0.17400419 0.2616425

rs4435802 0 1.0000000 -0.09589041 0.4122629

> # ... and for data part 2:

> sum2 <- summary(gtdata(mdta2))

> sum2[1:2,]

Chromosome Position Strand A1 A2 NoMeasured CallRate Q.2 P.11

rs1646456 1 653 + C G 83 0.9880952 0.33734940 36

rs4435802 1 5291 + C A 82 0.9761905 0.07926829 69

P.12 P.22 Pexact Fmax Plrt

rs1646456 38 9 1 -0.02402597 0.826397

rs4435802 13 0 1 -0.08609272 0.289791

Note, however, that we now got frequency of the effective (or coded) allele,
not the frequency of the reference allele! The quantity we need can be easily
computed, though:

> # for data part 1

> refallfreq1 <- 1 - sum1[,"Q.2"]

> # ... and for data part 2

> refallfreq2 <- 1 - sum2[,"Q.2"]

At this moment we can arrange the required data frame:

> mdf1 <- data.frame(name=snpnames(qts1),chromosome=chromosome(qts1),

+ position=map(qts1),refallele=refallele(qts1),

+ codedallele=effallele(qts1),strand = strand(qts1),

+ refallelefreq = refallfreq1,n=qts1[,"N"],

+ beta=qts1[,"effB"],

+ se_beta=qts1[,"se_effB"],p=qts1[,"P1df"],

+ p_corr=qts1[,"Pc1df"],call = sum1[,"CallRate"],

+ phwe = sum1[,"Pexact"], stringsAsFactors = FALSE)

note the last argument – stringsAsFactors = FALSE. I suggest you use that
by default when constructing a new data frame – unless you are sure that you
can work out your way later on with strings saved as factors.

Let us inspect the first 5 raws of the resulting output:

> mdf1[1:5,]
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name chromosome position refallele codedallele strand

rs1646456 rs1646456 1 653 C G +

rs4435802 rs4435802 1 5291 C A +

rs946364 rs946364 1 8533 T C -

rs299251 rs299251 1 10737 A G +

rs2456488 rs2456488 1 11779 G C +

refallelefreq n beta se_beta p p_corr call

rs1646456 0.6625000 40 0.1768955 0.2560635 0.4896745 0.4896745 1.000

rs4435802 0.9125000 40 -0.4064900 0.4095768 0.3209715 0.3209715 1.000

rs946364 0.7236842 38 0.2944870 0.2752734 0.2847102 0.2847102 0.950

rs299251 0.9615385 39 0.4958353 0.5989959 0.4077965 0.4077965 0.975

rs2456488 0.6625000 40 0.1145684 0.2271545 0.6140062 0.6140062 1.000

phwe

rs1646456 0.4775382

rs4435802 1.0000000

rs946364 0.6911168

rs299251 1.0000000

rs2456488 0.7320709

However, it is not recommended that you perform above-described report-
ing actions unless you develop your own format. In case if you plan to use
MetABEL-package for meta-analysis, you best use formetascore function, which
basically performs operations similar to described, and reports results in format
compatible with MetABEL-package.

Thus, if you plan to use MetABEL-package for meta-analysis, required tables
can be generated with single command:

> mdf1 <- formetascore(bmi~sex+age,mdta1,transform=rntransform, verbosity = 2 )

You can see that results are the same as previously:

> mdf1[1:5,]

name chromosome position strand allele1 allele2 build

rs1646456 rs1646456 1 653 + C G unknown

rs4435802 rs4435802 1 5291 + C A unknown

rs946364 rs946364 1 8533 - T C unknown

rs299251 rs299251 1 10737 + A G unknown

rs2456488 rs2456488 1 11779 + G C unknown

effallele effallelefreq n beta sebeta p pgc

rs1646456 G 0.33750000 40 0.1768955 0.2560635 0.4896745 0.4896745

rs4435802 A 0.08750000 40 -0.4064900 0.4095768 0.3209715 0.3209715

rs946364 C 0.27631579 38 0.2944870 0.2752734 0.2847102 0.2847102

rs299251 G 0.03846154 39 0.4958353 0.5989959 0.4077965 0.4077965

rs2456488 C 0.33750000 40 0.1145684 0.2271545 0.6140062 0.6140062

lambda.estimate lambda.se pexhwe call

rs1646456 1 NA 0.4775382 1.000

rs4435802 1 NA 1.0000000 1.000

rs946364 1 NA 0.6911168 0.950

rs299251 1 NA 1.0000000 0.975

rs2456488 1 NA 0.7320709 1.000
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To write all the data to a file, we can use standard R write.csv function:

> write.csv(mdf1,file="RData/part1.rnbmisexage.csv",row.names=F)

Similar analysis is applied to the second data set:

> mdf2 <- formetascore(bmi~sex+age,mdta2,transform=rntransform, verbosity = 2 )

We can inspect the first five lines of the output with

> mdf2[1:5,]

name chromosome position strand allele1 allele2 build

rs1646456 rs1646456 1 653 + C G unknown

rs4435802 rs4435802 1 5291 + C A unknown

rs946364 rs946364 1 8533 - T C unknown

rs299251 rs299251 1 10737 + A G unknown

rs2456488 rs2456488 1 11779 + G C unknown

effallele effallelefreq n beta sebeta p

rs1646456 G 0.32926829 82 -0.04879397 0.1663650 0.76929696

rs4435802 A 0.08024691 81 0.37724197 0.2984226 0.20618701

rs946364 C 0.25903614 83 -0.14414880 0.1790329 0.42073156

rs299251 G 0.04216867 83 -0.69920378 0.3919648 0.07444912

rs2456488 C 0.34146341 82 -0.23105805 0.1520352 0.12856957

pgc lambda.estimate lambda.se pexhwe call

rs1646456 0.77676571 1.070017 0.0009650323 0.8038996 0.9879518

rs4435802 0.22168453 1.070017 0.0009650323 1.0000000 0.9759036

rs946364 0.43635427 1.070017 0.0009650323 1.0000000 1.0000000

rs299251 0.08461892 1.070017 0.0009650323 1.0000000 1.0000000

rs2456488 0.14177789 1.070017 0.0009650323 0.4685397 0.9879518

Let us write the data to a file:

> write.csv(mdf2,file="RData/part2.rnbmisexage.csv",row.names=F)

Finally let us analyse and save results for another data set, ge03d2c:

> data(ge03d2c)

> mdf3 <- formetascore(bmi~sex+age,ge03d2c,transform=rntransform, verbosity = 2 )

> write.csv(mdf3,file="RData/part3.rnbmisexage.csv",row.names=F)

10.4 Meta-analysis with MetABEL-package

Now we are ready to meta-analyse GWA data coming from three studies. For
this we will need to use MetABEL-package package, implementing simple meta-
analysis functions for GWA data. Start with loading the package:

> library(MetABEL)

We will first meta-analyse the three studies using the data frames generated
in previous section, mdf1, mdf2 and mdf3. For this we will use the core function of
MetABEL-package, metagwa.tables. This function takes four arguments: two
data frames with results from individual studies, and two arguments supplying
the study names. Pooling of multiple studies is possible by sequential application
of this function.

Let us pool two first data frames:
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> pooled <- metagwa.tables(mdf1,mdf2,name.x="Part1",name.y="Part2")

analysing ...

Lambda Part1 = 0.9499903

Lambda Part2 = 1.098705

Corrected Lambda Part1 = 0.9499903

Corrected Lambda Part2 = 1

Lambda POOLED data = 1.023276

... DONE

The pooled data frame contains results of meta-analysis and essential details
of the original studies:

> pooled[1:5,]

name strand allele1 allele2 effallele chromosome position n npops

1 rs100616 - G C C 1 1911712 122 2

2 rs1006497 + T G G 1 2658810 122 2

3 rs1011580 + A G G 3 10048771 121 2

4 rs1011953 + A G G 2 6464510 123 2

5 rs1013473 + A T T 1 4487262 123 2

beta sebeta effallelefreq call pexhwe obetaPart1

1 0.11443814 0.1850338 0.1270492 0.9919020 4.64447636 0.08819818

2 -0.07946221 0.1954998 0.1434426 0.9920082 0.16813927 -0.25425751

3 -0.06801448 0.1397522 0.5041322 0.9837773 3.15056880 -0.06755996

4 0.07539928 0.1372443 0.3292683 1.0000000 0.10373542 0.18982068

5 0.30393338 0.1334451 0.5121951 1.0000000 0.04821391 0.31522388

obetaPart2 osePart1 osePart2 chi2 p

1 0.1230224623 0.3726827 0.2131624 0.3825070 0.5362646

2 -0.0001117686 0.3498751 0.2357343 0.1652071 0.6844070

3 -0.0683575796 0.2130800 0.1851327 0.2368565 0.6264858

4 0.0055254619 0.2228918 0.1741797 0.3018185 0.5827446

5 0.2978861467 0.2259542 0.1653644 5.1874252 0.0227509

If one needs to pool more studies, this data frame should be used as the first
argument of the metagwa.tables, and name.x argument should take special
value ”POOLED”:

> pooled <- metagwa.tables(pooled,mdf3,name.x="POOLED",name.y="mdf3")

NA for betas in both populaions

18 SNPs removed

analysing ...

Lambda mdf3 = 1.128096

Corrected Lambda mdf3 = 1

Lambda POOLED data = 1.340905

... DONE

> pooled[1:5,]

name strand allele1 allele2 effallele chromosome position n npops

1 rs1000475 + T C C X 13721802 91 1
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2 rs1000909 - A G G 2 8531681 190 1

3 rs1006092 - T G G X 13527448 190 1

4 rs100616 - G C C 1 1911712 310 3

5 rs1006497 + T G G 1 2658810 315 3

beta sebeta effallelefreq call pexhwe obetaPart1

1 -0.05521349 0.11185255 0.5824176 0.4690722 5.9671619 NA

2 -0.08504871 0.13218866 0.8157895 0.9793814 2.8521518 NA

3 -0.03712065 0.08523891 0.5078947 0.9793814 6.8378385 NA

4 0.11824774 0.12085884 0.1241935 0.9780568 6.5922479 0.08819818

5 -0.02366946 0.11439872 0.1603175 0.9937465 0.2313494 -0.25425751

obetaPart2 obetamdf3 osePart1 osePart2 osemdf3 chi2

1 NA -0.055213494 NA NA 0.11185255 0.24366808

2 NA -0.085048708 NA NA 0.13218866 0.41394922

3 NA -0.037120652 NA NA 0.08523891 0.18965112

4 0.1230224623 0.121082405 0.3726827 0.2131624 0.15961076 0.95725763

5 -0.0001117686 0.005382408 0.3498751 0.2357343 0.14107317 0.04280893

p

1 0.6215693

2 0.5199718

3 0.6632071

4 0.3278788

5 0.8360855

This procedure may become quite laborious if multiple studies are to be
pooled. In this case, it is possible to run meta-analysis using data provided in
files, by applying function metagwa.files. As the first argument, this func-
tion takes the path to the directory where the files with results of individual
studies are stored. It is assumed that the file names are made of two parts:
population/study name and an extension. Thus the second argument of the
metagwa.files function is the vector with names of studies, and the third
one provides extension. Other arguments, ”maf”, ”call” and ”phwe” provide the
threshold for QC filtering of SNPs in individual studies.

The function does not return any value, but rather creates a new file named
POOLEDextens, where ”extens” is the argument supplied to the function, in the
source directory. To run analysis on the three files in the directory ”RData” we
can use

> metagwa.files(dir="RData",pops=c("part1","part2","part3"),extens=".rnbmisexage.csv",maf=0.005,call=0.95,phwe=1.e-8)

Population part1 , reading RData/part1.rnbmisexage.csv done

Dimesions after filters are 3482 18

population part2, reading RData/part2.rnbmisexage.csv done

Dimesions after filters are 3530 18

analysing ...

Lambda part1 = 0.9493588

Lambda part2 = 1.095788

Corrected Lambda part1 = 0.9493588

Corrected Lambda part2 = 1

Lambda POOLED data = 1.024196

... DONE

Dimesions after pooling are 3533 20
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population part3, reading RData/part3.rnbmisexage.csv done

Dimesions after filters are 7444 18

analysing ...

Lambda part3 = 1.12461

Corrected Lambda part3 = 1

Lambda POOLED data = 1.345936

... DONE

Dimesions after pooling are 7444 22

$analysed.pops

[1] "part1" "part2" "part3"

extra arguments regulate the SNP exclusion criteria: maf=0.01 tells to exclude
SNPs with minor allele frequency less then 0.5%, call=0.95 tells to drop SNPs
with call rate less than 95%, and phwe=1.e-8 instructs to exclude SNPs with
HWE P -value ≤ 10−8.

Now we can read and inspect the results of meta-analysis with:

> poolf <- read.csv("RData/POOLED.rnbmisexage.csv",strings=F)

> poolf[1:5,]

name strand allele1 allele2 effallele chromosome position n npops

1 rs1000909 - A G G 2 8531681 190 1

2 rs1006092 - T G G X 13527448 190 1

3 rs100616 - G C C 1 1911712 310 3

4 rs1006497 + T G G 1 2658810 315 3

5 rs1010481 + A C C 2 8409087 190 1

beta sebeta effallelefreq call pexhwe obetapart1

1 -0.08504871 0.13198426 0.8157895 0.9793814 2.8521518 NA

2 -0.03712065 0.08510711 0.5078947 0.9793814 6.8378385 NA

3 0.11825684 0.12070003 0.1241935 0.9780568 6.5922479 0.08819818

4 -0.02359567 0.11424656 0.1603175 0.9937465 0.2313494 -0.25425751

5 -0.03241475 0.12358721 0.2657895 0.9793814 0.0000000 NA

obetapart2 obetapart3 osepart1 osepart2 osepart3 chi2

1 NA -0.085048708 NA NA 0.13198426 0.41523235

2 NA -0.037120652 NA NA 0.08510711 0.19023899

3 0.1230224623 0.121082405 0.3726827 0.2128792 0.15936396 0.95992605

4 -0.0001117686 0.005382408 0.3498751 0.2354211 0.14085503 0.04265582

5 NA -0.032414750 NA NA 0.12358721 0.06879205

p

1 0.5193256

2 0.6627178

3 0.3272055

4 0.8363747

5 0.7931037

10.5 Answers to the exercise

Perform meta-analysis of the data presented in table 10.2. Which allele is the
risk one? Is this risk significant? What is pooled Odds Ratio and 95% confidence
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interval? Do analysis using at least two methods. Which method is better (best)
in this situation? Why?

We first need to unify Odds Ratios by using the same effective allele. Let that
be the ”risk” allele, as may be guessed from a glance to the data, namely ”Pro”.
When the effects are reported for the other, ”Ala” allele, the corresponding ORs
for the ”Pro” allele can be found using simple relation ORPro = 1/ORAla.

Thus, the vector of Odds Ratios for ”Pro” allele is

> or.pro <- c(1./.67,0.93,1.08,1./.83,1.22,1.23)

> or.pro

[1] 1.492537 0.930000 1.080000 1.204819 1.220000 1.230000

The corresponding P − values are

> p <- c(0.013,0.6,0.84,0.40,0.25,0.07)

Let us find log-ORs

> logor.pro <- log(or.pro)

> logor.pro

[1] 0.40047757 -0.07257069 0.07696104 0.18632958 0.19885086 0.20701417

Corresponding squared standard errors are

> s2 <- logor.pro*logor.pro/qchisq(1-p,1)

> s2

[1] 0.02599764 0.01915121 0.14531060 0.04901514 0.02988102 0.01305349

and weights are

> w <- 1/s2

> w

[1] 38.465034 52.216009 6.881811 20.401860 33.466060 76.607876

Thus the pooled estimate of log-OR is

> p.logor.pro <- sum(w*logor.pro)/sum(w)

> p.logor.pro

[1] 0.1686548

and the standard error is

> p.s <- 1/sqrt(sum(w))

> p.s

[1] 0.06622101

Thus the pooled estimate of Odds Ratio from association between type 2
diabetes and ”Ala” allele is

> exp(p.logor.pro)
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[1] 1.183711

and the 95% confidence interval is

> exp(p.logor.pro-1.96*p.s)

[1] 1.039627

> exp(p.logor.pro+1.96*p.s)

[1] 1.347765

The χ2 test for association and corresponding P − value are

> p.chi2 <- (p.logor.pro/p.s)^2

> p.chi2

[1] 6.486429

> p.pval <- 1-pchisq(p.chi2,1)

> p.pval

[1] 0.01087011

Z-score pooling though may be more appropriate method for such differen-
tially designed studies (e.g. control groups are very different). To get Z-score
pooling working, we need first find Z-scores from P-values

> p <- c(0.013,0.6,0.84,0.40,0.25,0.07)

> z <- sqrt(qchisq(1-p,1))

> z

[1] 2.4837693 0.5244005 0.2018935 0.8416212 1.1503494 1.8119107

and assign the right sign (let ”+” is for the risk effect of ”Pro”).

> effsig <- c(1,-1,1,1,1,1)

> z <- z*effsig

> z

[1] 2.4837693 -0.5244005 0.2018935 0.8416212 1.1503494 1.8119107

Now, we need to assign weights to the studies as

> n <- c(221,306,71,164,242,471)

> w <- sqrt(n)

ane the pooled estimate of Z and corresponding P − value are

> zpoo <- sum(w*z)/sqrt(sum(w^2))

> zpoo

[1] 2.537333

> 1-pchisq(zpoo*zpoo,1)

[1] 0.01117008

As you can see the results are almost identical to the previous obtained with
inverse variance pooling.
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10.5.1 Exercise 9:

Perform meta-analsys excluding the original report (study 1). Is there still
significant association between Pro12Ala and diabetes?

The answer to this exercise can be obtained in exactly the same manner, as
for the previous one, limiting our consideration to the last five studies.

Thus, the vector of Odds Ratios for ”Pro” allele is

> or.pro <- c(0.93,1.08,1./.83,1.22,1.23)

> or.pro

[1] 0.930000 1.080000 1.204819 1.220000 1.230000

The corresponding P − values are

> p <- c(0.6,0.84,0.40,0.25,0.07)

Let us find log-ORs

> logor.pro <- log(or.pro)

> logor.pro

[1] -0.07257069 0.07696104 0.18632958 0.19885086 0.20701417

Corresponding squared standard errors are

> s2 <- logor.pro*logor.pro/qchisq(1-p,1)

> s2

[1] 0.01915121 0.14531060 0.04901514 0.02988102 0.01305349

and weights are

> w <- 1/s2

> w

[1] 52.216009 6.881811 20.401860 33.466060 76.607876

Thus the pooled estimate of log-OR is

> p.logor.pro <- sum(w*logor.pro)/sum(w)

> p.logor.pro

[1] 0.1216172

and the standard error is

> p.s <- 1/sqrt(sum(w))

> p.s

[1] 0.07262917

Thus the pooled estimate of Odds Ratio from association between type 2
diabetes and ”Ala” allele is

> exp(p.logor.pro)
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[1] 1.129322

and the 95% confidence interval is

> exp(p.logor.pro-1.96*p.s)

[1] 0.9794776

> exp(p.logor.pro+1.96*p.s)

[1] 1.30209

The χ2 test for association and corresponding P − value are

> p.chi2 <- (p.logor.pro/p.s)^2

> p.chi2

[1] 2.803937

> p.pval <- 1-pchisq(p.chi2,1)

> p.pval

[1] 0.09403318

Z-score pooling though may be more appropriate method for such differen-
tially designed studies (e.g. control groups are very different). To get Z-score
pooling working, we need first find Z-scores from P-values

> p <- c(0.6,0.84,0.40,0.25,0.07)

> z <- sqrt(qchisq(1-p,1))

> z

[1] 0.5244005 0.2018935 0.8416212 1.1503494 1.8119107

and assign the right sign (let ”+” is for the risk effect of ”Pro”).

> effsig <- c(-1,1,1,1,1)

> z <- z*effsig

> z

[1] -0.5244005 0.2018935 0.8416212 1.1503494 1.8119107

Now, we need to assign weights to the studies as

> n <- c(306,71,164,242,471)

> w <- sqrt(n)

ane the pooled estimate of Z and corresponding P − value are

> zpoo <- sum(w*z)/sqrt(sum(w^2))

> zpoo

[1] 1.709151

> 1-pchisq(zpoo*zpoo,1)

[1] 0.08742297

As you can see the results are almost identical to the previous obtained with
inverse variance pooling.
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Chapter 11

Analysis of selected region

Small data set ’srdta’, which is part of the GenABEL-package library, will be
used in this section. Start R and load the GenABEL-package and the data with

> library(GenABEL)

> data(srdta)

11.1 Exploring linkage disequilibrium

See help for r2fast.

11.2 Haplotype analysis

Use

> gtforld <- as.hsgeno(srdta[,1:5])

to convert part of your SNPs to haplo.stats format.
You can also use interface function to do sliding widow analysis

> h2 <- scan.haplo("qt1~CRSNP",srdta,snps=c(1:5))

11.3 Analysis of interactions

See help for scan.haplo.2D and scan.glm.2D
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Appendix A

Importing data to
GenABEL-package

This section is outdated. By far the most used way is through the
TPED

As described in section 4.1, the GenABEL-package gwaa.data-class consists
of phenotypic data frame and an object of snp.data-class, which contains all
genetic data. To import data to GenABEL-package, you need to prepare two
files: one containing the phenotypic, and the other containing genotypic data.

The phenotype file relates study subject IDs with values of covariates and
outcomes. In the phenotypic data file, the first line gives a description (variable
name) of the data contained in a particular column; the names should better be
unique, otherwise R will change them.

The first column of the phenotype file must contain the subjects’ unique
ID, named ”id”. The IDs listed here, and in the genotypic data file, must be the
same. It is recommended that the id names are given in quotation marks (see
example below), which will save you a possible troubles with e.g. leading zeros.

There also should also be a column named ”sex” and giving sex information
(0 = female, 1 = male). Other columns in the file should contain phenotypic
information.

Missing values should be coded with ”NA”; binary traits should have values
0 or 1.

All subjects present in the genotypic files must be listed in the phenotypic
file as well, because sex information provided by the phenotypic file is an essential
part of the genotypic QC procedure.

An example of few first lines of a phenotype file is as follows:

id sex age bt1 qt qt1

"cd289982" 0 30.33 NA NA 3.93

"cd325285" 0 36.514 1 0.49 3.61

"cd357273" 1 37.811 0 1.65 5.30

"cd872422" 1 20.393 0 1.95 4.07

"cd1005389" 1 28.21 1 0.35 3.90

This file tells us that, for example, person 325286 is female (0 in second
column), and she has ”1” (usually this means a ”case”) value for the trait ”bt1”,
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so on. Person 289982 has measurements only for sex, age and qt1, while the
other measurements are missing (NA, Not Available).

If you need to add phenotypes to an already created gwaa.data-class, you
can use the add.phdata function. This function allows you to add variables
contained in some data frame to the existing data@phdata object. The data
frame to be added should contain an ”id” variable, identical to that existing in
the object, and should not contain any other variables with names identical
to those that already exist.

The second file you need should contains genotypic data. As described in sec-
tion 4.1 (”General description of gwaa.data-class”, page 77), GenABEL-package
snp.data-class contains different types of information. For every SNP, informa-
tion on map position, chromosome, and strand should be provided. For every
person, every SNP genotype should be provided. GenABEL-package provides a
number of function to convert these data from different formats to the inter-
nal GenABEL-package raw format. We will first consider our preferred format,
which we informally call ”Illumina”-like.

A.1 Converting from preferred format

We will consider use of convert.snp.illumina procedure; details of other pro-
cedures are given later. Note that what we call ”illumina” format is not really a
proprietary format from that company, it is just one of the possible text output
format from the Illumina BeadStudio; similar formats are accepted/generated
by HapMap and Affymetrix.

The file of the ”Illumina” format contains SNPs in rows and IDs in columns.
The first line is a ”header”, containing column names. The first three columns
should contain information on SNP name, chromosome, and position. There is
an optional (though highly recommended!) fourth column, containing strand
information (acceptable codes: ”+”, ”-”, ”u”, the last stands for ”unknown”).
After that column, each of the residual ones corresponds to an individual, with
ID as the column name. Genotypes should be presented by two consecutive
characters (no separator).

An example of few first lines of the ”illumina” genotypic file is as follows:

name chr pos strand "cd289982" "cd325285" "cd357273" "cd872422" "cd1005389"

rs1001 1 1235 + AA AG AG AA GG

rs6679 9 2344 + GT GG GG TG GG

rs2401 22 3455 + AA CC CC CC AC

rs123 X 32535 - TT GT TT TT TT

rs6679 XY 2344 - GT GG GG TG GG

rs876 Y 23556 + 00 00 TT GG TT

mitoA1 mt 24245 - AA CC 00 00 00

It is clear that is not quite conventional Illumina file – because in BeadStudio
the alleles are reported using the ”top” strand; rather, this is an Affymetrix
or HapMap-type of a file. Anyways, this file contains all required genotypic
information, and this file format is the preferred one for import. Assume that
the file with the genotypic data is called ”gen0.illu”, and is stored in the directory
”RData”.

First, start R and load GenABEL-package:
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> library(GenABEL)

You can convert the data to GenABEL-package raw format by

> convert.snp.illumina(inf="RData/gen0.illu",

+ out="RData/gen0i.raw",

+ strand="file")

Reading genotypes from file 'RData/gen0.illu' ...

Writing to file 'RData/gen0i.raw' ...

... done.

Here is the content of the converted file ”gen0i.raw” – internal raw data
representation:

#GenABEL raw data version 0.1

"cd289982" "cd325285" "cd357273" "cd872422" "cd1005389"

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1

1 9 22 X XY Y mt

1235 2344 3455 32535 2344 23556 24245

04 0c 0f 08 0c 08 0f

01 01 01 02 02 01 02

69 c0

96 40

d5 80

65 40

96 40

07 40

d0 00

Note the option strand="file" – it is telling GenABEL-package that strand
information is provided in the file.

At this moment, you can load the data into GenABEL-package. Assume
that the phenotypic file described above is called ”phe0.dat” and the converted
genotypic file in the raw GenABEL-package format is called ”gen0i.raw”. You
can load the data using the command

> df <- load.gwaa.data(phe="RData/phe0.dat",

+ gen="RData/gen0i.raw",

+ force=TRUE)

ids loaded...

marker names loaded...

chromosome data loaded...

map data loaded...

allele coding data loaded...

strand data loaded...

genotype data loaded...

snp.data object created...

assignment of gwaa.data object FORCED; X-errors were not checked!

The option ”force=TRUE” tells that GenABEL-package should load the data
even if it fins sex errors.

You can inspect the loaded data; let us first look into phenotypic data by by
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> df@phdata

id sex age bt1 qt qt1

cd289982 cd289982 0 30.330 NA NA 3.93

cd325285 cd325285 0 36.514 1 0.49 3.61

cd357273 cd357273 1 37.811 0 1.65 5.30

cd872422 cd872422 1 20.393 0 1.95 4.07

cd1005389 cd1005389 1 28.210 1 0.35 3.90

. . . than check that the genotypes have imported right:

> g0 <- as.character(df@gtdata)

> g0

rs1001 rs6679 rs2401 mitoA1 rs123 rs6679 rs876

cd289982 "A/A" "G/T" "A/A" "A/A" "T/T" "G/T" NA

cd325285 "A/G" "G/G" "C/C" "C/C" "T/G" "G/G" NA

cd357273 "A/G" "G/G" "C/C" NA "T/T" "G/G" "T/T"

cd872422 "A/A" "G/T" "C/C" NA "T/T" "G/T" "G/G"

cd1005389 "G/G" "G/G" "C/A" NA "T/T" "G/G" "T/T"

> as.character(df@gtdata@strand)

rs1001 rs6679 rs2401 mitoA1 rs123 rs6679 rs876

"+" "+" "+" "-" "-" "-" "+"

> as.character(df@gtdata@coding)

rs1001 rs6679 rs2401 mitoA1 rs123 rs6679 rs876

"AG" "GT" "CA" "CA" "TG" "GT" "TG"

In a real Illumina file, a coding on the TOP strand is supplied. Then, the
file will normally look like

name chr pos "cd289982" "cd325285" "cd357273" "cd872422" "cd1005389"

rs1001 1 1235 AA AG AG AA GG

rs6679 9 2344 GT GG GG TG GG

rs2401 22 3455 AA CC CC CC AC

rs123 X 32535 TT GT TT TT TT

rs6679 XY 2344 GT GG GG TG GG

rs876 Y 23556 00 00 TT GG TT

mitoA1 mt 24245 AA CC 00 00 00

and the conversion command will be

> convert.snp.illumina(inf="RData/gen0.illuwos",

+ out="RData/gen0iwos.raw",

+ strand="+")

Reading genotypes from file 'RData/gen0.illuwos' ...

Writing to file 'RData/gen0iwos.raw' ...

... done.
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In this particular data set, after conversion, the ”+” strand will actually mean
not ”forward”, but TOP – something you should remember for this particular
data. The resulting file will look like this:

You can load the data with

> df <- load.gwaa.data(phe="RData/phe0.dat",

+ gen="RData/gen0iwos.raw",

+ force=TRUE)

ids loaded...

marker names loaded...

chromosome data loaded...

map data loaded...

allele coding data loaded...

strand data loaded...

genotype data loaded...

snp.data object created...

assignment of gwaa.data object FORCED; X-errors were not checked!

Obviously, the ”strand” is always ”+” (here it means TOP):

> g1 <- as.character(df@gtdata)

> g1

rs1001 rs6679 rs2401 mitoA1 rs123 rs6679 rs876

cd289982 "A/A" "G/T" "A/A" "A/A" "T/T" "G/T" NA

cd325285 "A/G" "G/G" "C/C" "C/C" "T/G" "G/G" NA

cd357273 "A/G" "G/G" "C/C" NA "T/T" "G/G" "T/T"

cd872422 "A/A" "G/T" "C/C" NA "T/T" "G/T" "G/G"

cd1005389 "G/G" "G/G" "C/A" NA "T/T" "G/G" "T/T"

> as.character(df@gtdata@strand)

rs1001 rs6679 rs2401 mitoA1 rs123 rs6679 rs876

"+" "+" "+" "+" "+" "+" "+"

> as.character(df@gtdata@coding)

rs1001 rs6679 rs2401 mitoA1 rs123 rs6679 rs876

"AG" "GT" "CA" "CA" "TG" "GT" "TG"

We can see that the genotypes are identical to ones we imported previously,
as should be the case:

> g0 == g1

rs1001 rs6679 rs2401 mitoA1 rs123 rs6679 rs876

cd289982 TRUE TRUE TRUE TRUE TRUE TRUE NA

cd325285 TRUE TRUE TRUE TRUE TRUE TRUE NA

cd357273 TRUE TRUE TRUE NA TRUE TRUE TRUE

cd872422 TRUE TRUE TRUE NA TRUE TRUE TRUE

cd1005389 TRUE TRUE TRUE NA TRUE TRUE TRUE
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A.2 Converting PLINK tped files

PLINK TPED (transposed-pedigree) format bears notable similarity to what
we call ”Illumina” format, with few exceptions: (1) there is no header line giving
field names (and therefore IDs are stored in a separate file) (2) the first column
gives chromosome, second – SNP name, third genetic map (usually kept as
zeroes), the fourth – physical position, and, starting with the fifth column,
genotypic data are listed, (3) finally, within a genotypes, alleles are separated
with a space. In TPED format, the data we already worked with would look
like

1 rs1001 0 1235 A A A G A G A A G G

9 rs6679 0 2344 G T G G G G T G G G

22 rs2401 0 3455 A A C C C C C C A C

X rs123 0 32535 T T G T T T T T T T

XY rs6679 0 2344 G T G G G G T G G G

Y rs876 0 23556 0 0 0 0 T T G G T T

mt mitoA1 0 24245 A A C C 0 0 0 0 0 0

Obviously, a separate file is needed to keep correspondence between geno-
types and IDs. This file emulated standard pedigree file without a header line.
The file, conventionally called a TFAM-file, should contain six columns, cor-
responding to pedigree ID, ID, father, mother, sex, and affection. Only the
second column is used by GenABEL-package – please make sure you use unique
IDs. Consequently, it does not matter what pedigree ID, father/mother, sex, or
affection status you assign in the file – the real information is coming from the
phenotypic data file. The TFAM file for our data will look like this:

1 cd289982 0 0 1 0

1 cd325285 0 0 1 0

1 cd357273 0 0 1 0

1 cd872422 0 0 1 0

1 cd1005389 0 0 1 0

You can convert the data from PLINK TPED format to the GenABEL-package
format using command convert.snp.tped:

> convert.snp.tped(tped="RData/gen0.tped",

+ tfam="RData/gen0.tfam",

+ out="RData/gen0tped.raw",

+ strand="+")

Reading individual ids from file 'RData/gen0.tfam' ...

... done. Read 5 individual ids from file 'RData/gen0.tfam'
Reading genotypes from file 'RData/gen0.tped' ...

...done. Read 7 SNPs from file 'RData/gen0.tped'
Writing to file 'RData/gen0tped.raw' ...

... done.

and load the data with

> df <- load.gwaa.data(phe="RData/phe0.dat",

+ gen="RData/gen0tped.raw",

+ force=TRUE)
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ids loaded...

marker names loaded...

chromosome data loaded...

map data loaded...

allele coding data loaded...

strand data loaded...

genotype data loaded...

snp.data object created...

assignment of gwaa.data object FORCED; X-errors were not checked!

Obviously, the ”strand” is always ”+” (meaning TOP):

> g1 <- as.character(df@gtdata)

> g1

rs1001 rs6679 rs2401 mitoA1 rs123 rs6679 rs876

cd289982 "A/A" "G/T" "A/A" "A/A" "T/T" "G/T" NA

cd325285 "A/G" "G/G" "C/C" "C/C" "T/G" "G/G" NA

cd357273 "A/G" "G/G" "C/C" NA "T/T" "G/G" "T/T"

cd872422 "A/A" "G/T" "C/C" NA "T/T" "G/T" "G/G"

cd1005389 "G/G" "G/G" "C/A" NA "T/T" "G/G" "T/T"

> as.character(df@gtdata@strand)

rs1001 rs6679 rs2401 mitoA1 rs123 rs6679 rs876

"+" "+" "+" "+" "+" "+" "+"

> as.character(df@gtdata@coding)

rs1001 rs6679 rs2401 mitoA1 rs123 rs6679 rs876

"AG" "GT" "CA" "CA" "TG" "GT" "TG"

We can see that the genotypes are identical to ones we imported previously,
as should be the case:

> g0 == g1

rs1001 rs6679 rs2401 mitoA1 rs123 rs6679 rs876

cd289982 TRUE TRUE TRUE TRUE TRUE TRUE NA

cd325285 TRUE TRUE TRUE TRUE TRUE TRUE NA

cd357273 TRUE TRUE TRUE NA TRUE TRUE TRUE

cd872422 TRUE TRUE TRUE NA TRUE TRUE TRUE

cd1005389 TRUE TRUE TRUE NA TRUE TRUE TRUE

A.3 Converting linkage-like files

Linkage-like files, also known as pre-makeped files, or pedigree files, represent a
historic format which dates back to the time when only few markers could be
typed – thus the number of subjects was usually greater than the number of
markers. In that situation, it was natural and obvious to keep IDs in rows and
markers in columns. In the first six columns, standard linkage-like file would
contain pedigree ID, ID, father’s ID, mother’s ID, sex (coded as 1 = male and
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2 = female), and affection status (0 = unknown, 1 = unaffected, 2 = affected).
In the following columns, genotypic information is provided. Alleles of the same
genotype could be separated by a space, or by a slash (”/”). Thus the data we
are working with could be presented as

1 cd289982 0 0 1 0 A A G T A A T T G T 0 0 A A

1 cd325285 0 0 1 0 A G G G C C G T G G 0 0 C C

1 cd357273 0 0 1 0 A G G G C C T T G G T T 0 0

1 cd872422 0 0 1 0 A A T G C C T T T G G G 0 0

1 cd1005389 0 0 1 0 G G G G A C T T G G T T 0 0

As you can see, this file misses header line, and information what are the SNP
names, position, etc. should be provided in a separate MAP-file. GenABEL-package

accepts map in Merlin format, and an extended format. A map in Merlin format
consist of header line, giving column names, and three columns with chromo-
some, name and position information, for example:

chr name pos

1 rs1001 1235

9 rs6679 2344

22 rs2401 3455

X rs123 32535

XY rs6679 2344

Y rs876 23556

mt mitoA1 24245

The data can be converted to the internal GenABEL-package format with

> convert.snp.ped(pedfile="RData/gen0.ped",

+ mapfile="RData/map0.dat",

+ out="RData/gen0pedwos.raw",

+ strand="+")

Reading map from file 'RData/map0.dat' ...

... done. Read positions of 7 markers from file 'RData/map0.dat'
Reading genotypes from file 'RData/gen0.ped' ...

...done. Read information for 5 people from file 'RData/gen0.ped'
Analysing marker information ...

Writing to file 'RData/gen0pedwos.raw' ...

... done.

and loaded with

> df <- load.gwaa.data(phe="RData/phe0.dat",

+ gen="RData/gen0pedwos.raw",

+ force=TRUE)

ids loaded...

marker names loaded...

chromosome data loaded...

map data loaded...

allele coding data loaded...

strand data loaded...
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genotype data loaded...

snp.data object created...

assignment of gwaa.data object FORCED; X-errors were not checked!

We can inspect the genotypic data and check that conversion results are
identical to previous runs with

> g1 <- as.character(df@gtdata)

> g1

rs1001 rs6679 rs2401 mitoA1 rs123 rs6679 rs876

cd289982 "A/A" "G/T" "A/A" "A/A" "T/T" "G/T" NA

cd325285 "A/G" "G/G" "C/C" "C/C" "T/G" "G/G" NA

cd357273 "A/G" "G/G" "C/C" NA "T/T" "G/G" "T/T"

cd872422 "A/A" "G/T" "C/C" NA "T/T" "G/T" "G/G"

cd1005389 "G/G" "G/G" "C/A" NA "T/T" "G/G" "T/T"

> as.character(df@gtdata@strand)

rs1001 rs6679 rs2401 mitoA1 rs123 rs6679 rs876

"+" "+" "+" "+" "+" "+" "+"

> as.character(df@gtdata@coding)

rs1001 rs6679 rs2401 mitoA1 rs123 rs6679 rs876

"AG" "GT" "CA" "CA" "TG" "GT" "TG"

> g0 == g1

rs1001 rs6679 rs2401 mitoA1 rs123 rs6679 rs876

cd289982 TRUE TRUE TRUE TRUE TRUE TRUE NA

cd325285 TRUE TRUE TRUE TRUE TRUE TRUE NA

cd357273 TRUE TRUE TRUE NA TRUE TRUE TRUE

cd872422 TRUE TRUE TRUE NA TRUE TRUE TRUE

cd1005389 TRUE TRUE TRUE NA TRUE TRUE TRUE

If you are willing to import strand information, you can make use of the
extended map format. In this format the strand information is added to the
map-file:

chr name pos strand coding

1 rs1001 1235 + AG

9 rs6679 2344 + TG

22 rs2401 3455 + AC

X rs123 32535 - GT

XY rs6679 2344 - GT

Y rs876 23556 + GT

mt mitoA1 24245 - AC

The data can be converted to the internal GenABEL-package format with

> convert.snp.ped(pedfile="RData/gen0.ped",

+ mapfile="RData/emap0.dat",

+ out="RData/gen0ped.raw",

+ strand="file")
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Reading map from file 'RData/emap0.dat' ...

... done. Read positions of 7 markers from file 'RData/emap0.dat'
Reading genotypes from file 'RData/gen0.ped' ...

...done. Read information for 5 people from file 'RData/gen0.ped'
Analysing marker information ...

Writing to file 'RData/gen0ped.raw' ...

... done.

Note that option strand==file was used to specify that the extended map
format should be used. The data can be loaded with

> df <- load.gwaa.data(phe="RData/phe0.dat",

+ gen="RData/gen0ped.raw",

+ force=TRUE)

ids loaded...

marker names loaded...

chromosome data loaded...

map data loaded...

allele coding data loaded...

strand data loaded...

genotype data loaded...

snp.data object created...

assignment of gwaa.data object FORCED; X-errors were not checked!

We can inspect the genotypic data and check that conversion results are
identical to previous runs with

> g1 <- as.character(df@gtdata)

> g1

rs1001 rs6679 rs2401 mitoA1 rs123 rs6679 rs876

cd289982 "A/A" "G/T" "A/A" "A/A" "T/T" "G/T" NA

cd325285 "A/G" "G/G" "C/C" "C/C" "T/G" "G/G" NA

cd357273 "A/G" "G/G" "C/C" NA "T/T" "G/G" "T/T"

cd872422 "A/A" "G/T" "C/C" NA "T/T" "G/T" "G/G"

cd1005389 "G/G" "G/G" "C/A" NA "T/T" "G/G" "T/T"

> as.character(df@gtdata@strand)

rs1001 rs6679 rs2401 mitoA1 rs123 rs6679 rs876

"+" "+" "+" "-" "-" "-" "+"

> as.character(df@gtdata@coding)

rs1001 rs6679 rs2401 mitoA1 rs123 rs6679 rs876

"AG" "GT" "CA" "CA" "TG" "GT" "TG"

> g0 == g1

rs1001 rs6679 rs2401 mitoA1 rs123 rs6679 rs876

cd289982 TRUE TRUE TRUE TRUE TRUE TRUE NA

cd325285 TRUE TRUE TRUE TRUE TRUE TRUE NA

cd357273 TRUE TRUE TRUE NA TRUE TRUE TRUE

cd872422 TRUE TRUE TRUE NA TRUE TRUE TRUE

cd1005389 TRUE TRUE TRUE NA TRUE TRUE TRUE
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A.4 Converting from MACH format

The data from MACH format can be converted by using convert.snp.mach.
This function actually calls convert.snp.ped in specific format. MACH soft-
ware is widely used for SNP imputations. For our needs we consider two files
produced by MACH: pedigree file with (the imputed) genotypic data, and info-
file, containing information about quality of imputations for particular SNP.

SEE HELP FOR convert.snp.mach for further details.

A.5 Converting from text format
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Appendix B

GenABEL internals

B.1 Internal structure of gwaa.data-class

Start R and load GenABEL-package library using command

> library(GenABEL)

After that, load the data with the command

> data(srdta)

The object you have loaded, srdta, belongs to the gwaa.data class. This is
a special class developed to facilitate GWA analysis.

In GWA analysis, different types of data are used. These include the pheno-
typic and genotypic data on the study participants and chromosome and location
of every SNP. For every SNP, it is desirable to know the details of coding (what
are alleles? – A, T, G, C? – and what is the strand – ’+’ or ’-’, ’top’ or ’bot’?
– this coding is for).

One could attempt to store all phenotypes and genotypes together in a single
table, using, e.g. one row per study subject; than the columns will correspond
to study phenotypes and SNPs. For a typical GWA data set, this would lead
to a table of few thousands rows and few hundreds of thousands of columns.
Such a format is generated when one downloads HapMap data for a region. To
store GWA data in such tables internally, within R, proves to be inefficient. In
GenABEL-package, special data class, gwaa.data-class is used to store GWA
data. The structure of this data class is shown at the figure B.1.

An object of some class has ”slots” which may contain actual data or objects
of other classes. The information stored at a particular slot of an object can
be accessed by command object@slot.

At the first level, a gwaa.data-class object has slot phdata, which contains
all phenotypic information in a data frame (data.frame-class object). The
rows of this data frame correspond to study subjects, and the columns corre-
spond to the variables. There are two default variables, which are always present
in phdata. The first of these is ”id”, which contains study subject identification
code. This identification code can be arbitrary character, but every person must
be coded with an unique ID. The second default variable is ”sex”, where males
are coded with ones (”1”) and females are coded with zero (”0”). It is important
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object
gwaa.data-class
All GWA data

object@gtdata
snp.data-class
All genetic data

object@phdata
data.frame-class
Phenotypic data

object@gtdata@nids
integer
# of people in study

object@gtdata@male
vector of integer
Sex (1=male, 0=female)

object@gtdata@idnames
vector of character
IDs of study participants

object@gtdata@nsnps
integer
# of SNPs in study

object@gtdata@snpnames
vector of character
IDs of study SNPs

object@gtdata@chromosome
vector of character
Chromosome label (1, 2, ... X)

object@gtdata@map
vector of double
SNPs map positions

object@gtdata@gtps
snp.mx-class
Genotypic data in compressed format

object@gtdata@coding
snp.coding-class
SNP allele coding (”AG”, “AC”, ...) 

object@gtdata@strand
snp.strand-class
SNP allele strand (”+”, “-”)

Figure B.1: Structure of gwaa.data-class. In every box, first line contains the
object and slot names, second line describes the class of this object, and third
line describes what information is contained.
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to understand that this data frame is not supposed to be directly modified by
the user. In particular, it is extremely important to remember that one should
not directly add subjects to the table, change the values of ”id” and ”sex”, and
change the order of subjects in phdata unless this one is really understands the
way GenABEL-package works. One also should not run such data manipulation
functions as merge, cbind and rbind – exactly because they may change the
number of subjects or interfere with the order. On the other hand, it is OK to
add more variables to the data frame through direct computations, for example,
if one wishes to add computed body mass index, it is OK to run the command
like

obj@phdata$bmi <- obj@phdata$weight/((obj@phdata$height)2̂)

To add many variables to phdata, special GenABEL function add.phdata

should be used.

The other slot of an object of gwaa.data-class is slot gtdata, which con-
tains all GWA genetic information in an object of class snp.data class (figure
B.1). This class, in turn, has slots nids, containing the number of study sub-
jects, idnames, containing all ID names of these subjects, nsnps, containing
the number of SNPs typed, snpnames, containing the SNP names, chromosome,
containing the name of the chromosome the SNPs belong to and slot map with
map position of SNPs, and slot male, containing the sex code for the subjects
(1=male, 0=female). The latter is identical to the ”sex” variable contained in
the phdata, but is duplicated here because many operations with purely genetic
data, in particular these concerning analysis of sex chromosomes, depend on the
sex. The strand information is presented in the slot strand. GenABEL-package
codes strand as ”+” (forward), ”-” (reverse) or ”u” (unknown). Of cause, if you
prefer top/bottom coding, this information may be stored in the same form –
you will just need to remember that ”+” corresponds to e.g. ”top”, and ”-” to
”bottom” strand. The allelic coding is presented in slot coding. Coding for ev-
ery allele is presented with a pair of characters, for example ”AG”. Thus, for such
polymorphism, you may expect ”AA”, ”AG” and ”GG” genotypes to be found
in population. The order (that is ”AG” vs ”GA”) is important – the first allele
reported is the one which will be used as a reference in association analysis, and
thus the effects are reported for the second allele. To avoid memory overheads,
the strand and coding information is internally stored as snp.strand-class and
snp.coding-class. Information can be converted to human-readable format
using as.character function.

If, for example, you would like to know, how many SNPs were included in
the study (slot nsnps of the slot gtdata of srdta), you need to run command

> srdta@gtdata@nsnps

[1] 833

Thus, 833 SNPs were typed in the study. You can access information stored in
any slot in this manner.

You may want to read the general GenABEL-package man page using help(GenABEL).
To see help on gwaa.data-class, you can use help("gwaa.data-class") (mind
the quotation marks!).
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Summary:

• An object of some class has ”slots” which may contain actual data or
objects of other classes. The information stored at a particular slot of an
object can be accessed by command object@slot.

• GenABEL-package uses special data class, gwaa.data-class, to store
GWA data.
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