
Examples for gWidgets

John Verzani, gWidgetsRGtk@gmail.com

August 27, 2014

Abstract:

[This was updated last for gWidgets 0.0-41.]

Examples for using the gWidgets package are presented. The gWidgets API is
intended to be a cross platform means within an R session to interact with a graphics
toolkit. Currently, the API can be used through:

• gWidgetsRGtk2 for RGtk2 package which is the most complete implemen-
tation.

• gWidgetstcltk for the tcltk package which is the easiest to install (for win-
dows users) but not as fully implemented or polished.

• gWidgetsQt for the qtbase package. This package allows the Qt toolkit to
be used from within R. It is being developed and is available from r-forge.

• gWidgetsrJava for the rJava package. This package may be deprecated in
the near term if no interest is shown.

The gWidgetsWWW package is an independent implementation for web pro-
gramming. It uses the EXT JS JavaScript libraries to provide R to web interactivity.
It leverages the rapache package for server installs, and has a user-only web browser
leveraged from the Rpad package. Unlike the other implementations, this package
is stand alone and does not use gWidgets itself.

The API is intended to facilitate the task of writing basic GUIs, as it simplifies
many of the steps involved in setting up widgets and packing them into containers.
Although not nearly as powerful as any individual toolkit, the gWidgets API is suit-
able for many tasks or as a rapid prototyping tool for more complicated applications.

1

gWidgetsRGtk@gmail.com

The examples contained herein illustrate that quite a few things can be done fairly
easily with more complicated applications being pieced together in a straightforward
manner. To see a fairly complicated application built using gWidgets, install the
pmg GUI (http://www.math.csi.cuny.edu/pmg), which is on CRAN.

The traitr package implements a model-view-controller programming style for
GUI development. It uses gWidgets to provide the GUI components.

1 Background

The gWidgets API is intended to be a cross-toolkit API for working with GUI
objects. It is based on the iwidgets API of Simon Urbanek, with improvements sug-
gested by Philippe Grosjean, Michael Lawrence, Simon Urbanek and John Verzani.
This document focuses on the more complete toolkit implementation provided by
the gWidgetsRGtk2 package. 1 The GTK toolkit is interfaced via the RGtk2
package of Michael Lawrence, which in turn is derived from Duncan Temple Lang’s
RGtk package. The excellent RGtk2 package opens up the full power of the GTK2
toolkit, only a fraction of which is available though gWidgetsRGtk2.

The gWidgets API is mostly stable, but does occasionally have additional meth-
ods and constructors added. If a feature seems lacking, please let the author know.

2 Overview

The basic tasks in setting up a GUI involve: constructing the desired widgets, laying
these widgets out into containers, and assigning handlers to respond to user-driven
events involving the widgets. The gWidgets package is geared around these tasks,
and also around providing a familiar means to interact with the widgets once con-
structed. The actual toolkits have much more flexibility during the layout of the GUI
and afterwards in pragmatically interacting with the GUI. Each widget constructor in
gWidgets includes the arguments container to specify a parent container to place
it in; handler, to specify a handler to respond to the main event that the widget
has; and action, which is used to pass extra information along to any handler. Each
widget when constructed returns an object of S4 class which can be manipulated
using generic functions, some new and some familiar.

1Occasional differences with gWidgetsQt, gWidgetstcltk, or gWidgetsrJava are pointed
out in braces. The major differences from the gWidgets API are documented in the help files
given by the package name, e.g. gWidgetstcltk

2

http://www.math.csi.cuny.edu/pmg

The basic widgets are likely familiar: buttons, labels, text-edit areas, etc. In
addition, there are some R-specific compound widgets such as a variable browser,
data frame viewer, and help viewer. In contrast to these, are a few basic dialogs,
which draw their own window and are modal, hence do not return objects which can
be manipulated.

The examples below introduce the primary widgets, containers, and dialogs in a
not-so systematic manner, focusing instead on some examples which show how to
use gWidgets. The man pages are also a source information about the widgets, see
?gWidgets for more detail. For differences between the toolkit implementation, see
the man page for the package name, for example, ?gWidgetstcltk.

This document is a vignette. As such, the code displayed is available within an
R session through the command edit(vignette("gWidgets")).

3 Installation

In case you are reading this vignette without having installed gWidgets, here are
some instructions focusing on installing gWidgetsRGtk2.

More details are found at the gWidgets website http://www.math.csi.cuny.

edu/pmg/gWidgets.
Installing gWidgets with the gWidgetsRGtk2 package requires two steps: in-

stalling the GTK libraries and installing the R packages.

3.1 Installing the GTK libraries

The gWidgetsRGtk2 provides a link between gWidgets and the GTK libraries through
the RGTk2 package. RGtk2 requires relatively modern versions of the GTK libraries
(2.8.12 is suggested). These may need to be installed or upgraded on your system.

In case of Windows you can do this:

1. Download the files from http://gladewin32.sourceforge.net/modules/wfdownloads/visit.php?lid=102

2. run the resulting file. This is an automated installer which will walk you
through the installation of the Gtk2 libraries.

For Windows users, the following command, will do this and install pmg. (Likely
you are better off with the previous method.)

> source("http://www.math.csi.cuny.edu/pmg/installPMG.R")

3

http://www.math.csi.cuny.edu/pmg/gWidgets
http://www.math.csi.cuny.edu/pmg/gWidgets
http://gladewin32.sourceforge.net/modules/wfdownloads/visit.php?lid=102

In Linux, you may or may not need to upgrade the GTK libraries depending on
your distribution. If you have a relatively modern installation, you should be ready.

For Mac OS X there is also a packaged port of the GTK run time libraries available
through at http://r.research.att.com/.

When the author used this quite some time ago, the cairoDevice package failed
(this may be fixed by now). As such, the the macports (http://www.macports.org)
project was used to install its gtk2 package. Once macports is installed, the command

sudo port install gtk2

will install the libraries (although it may take quite a while).
There are more details on RGtk2 at RGtk2’s home page.

3.2 Install the R packages

The following R packages are needed: RGtk2, cairoDevice, gWidgets, and gWidgetsRGtk2.
Install them in this order, as some depend on others to be installed first. All can be
downloaded from CRAN.

These can all be installed by following the dependencies for gWidgetsRGtk2. The
following command will install them all if you have the proper write permissions:

install.packages("gWidgetsRGtk2", dep = TRUE)

It may be necessary to adjust the location where the libraries will be installed if
you do not have the proper permissions.

For MAC OS X, the source packages might be desired if you installed via mac-
ports, not the default “mac.binary.” Use the type= argument, as follows:

> install.packages("gWidgetsRGtk2", dep = TRUE,type = "source")

[The gWidgetsQt package requires the qtbase package which is not yet on
CRAN, but rather is installed through r-forge.]

[The gWidgetstcltk requires the 8.5 version of tcl/tk which comes with the
windows version of R as of 2.7.0, but typically needs to be installed manually for
linux and mac machines, as of this writing.]

[The gWidgetsrJava package is installed similarly. However, it requires rJava.
These should install through the dependencies, so

> install.packages("gWidgetsrJava", dep = TRUE)

4

http://r.research.att.com/
http://www.macports.org
http://www.ggobi.org/rgtk2

should do it. The rJava has some potential issues with the mac version of R that
can arise if R is compiled from source.]

[The gWidgetsWWW package is altogether different. The package requires
rapache to be installed to be used in server mode. As well, the apache web server
must also be configured. The package can be used locally through a standalone web
server.]

4 Loading gWidgets

We load the gWidgets package, using the gWidgetsRGtk2 toolkit, below: following

> require(gWidgets)

> ##options("guiToolkit"="RGtk2")

> options("guiToolkit"="tcltk")

When gWidgets is started, it tries to figure out what its default toolkit will be.
In this examples, we’ve set it to be “gWidgetsRGtk2.” If the option was not set and
there is more than one toolkit available, then a menu asks the user to choose between
toolkit implementations.

[For gWidgetsQt use “Qt”, for gWidgetsrJava use “rJava” in the options call
or “tcltk” for the gWidgetstcltk package.]

[The gWidgetsWWW package is different, as it doesn’t use the gWidgets
package for dispatch. It is loaded directly via require(gWidgetsWWW, quietly=TRUE)

– using the quietly switch, as anything output to STDOUT is sent to the browser.]

5 Hello world

We begin by showing how to make various widgets which display the ubiquitous
“Hello world” message.

Now to illustrate (Figure 1 shows a few) some of the basic widgets. These first
widgets display text: a label, a button and a text area.

First a button:

> obj <- gbutton("Hello world", container = gwindow())

Next a label:

> obj <- glabel("Hello world", container = gwindow())

5

Figure 1: Four basic widgets: a button, a label, radio buttons, and a drop list.

6

Now for single line of editable text:

> obj <- gedit("Hello world", container = gwindow())

Finally, a text buffer for multiple lines of text:

> obj <- gtext("Hello world", container = gwindow())

The following widgets are used for selection of a value or values from a vector of
possible values.

First a radio group for selecting just one of several:

> obj <- gradio(c("hello","world"), container=gwindow())

Next, combo box, (was called a droplist) again for selecting just one of several,
although in this case an option can be give for the user to edit the value.

> obj <- gcombobox(c("hello","world"), container=gwindow())

A combo box can also allow its value to be entered by typing,

> obj <- gcombobox(c("hello","world"), editable=TRUE, container=gwindow())

For longer lists, a table of values can be used.

> obj <- gtable(c("hello","world"), container=gwindow())

This widget is also used for displaying tabular data with multiple columns and rows
(data frames). For this widget there is an argument allowing for multiple selections.
Multiple selections can also be achieved with a checkbox group:

> obj <- gcheckboxgroup(c("hello","world"), container=gwindow())

For selecting a numeric value from a sequence of values, sliders and spinbuttons
are commonly used:

> obj <- gslider(from=0, to = 7734, by =100, value=0,

+ container=gwindow())

> obj <- gspinbutton(from=0, to = 7734, by =100, value=0,

+ container=gwindow())

Common to all of the above is a specification of the “value” of the widget, and
the container to attach the widget to. In each case a top-level window constructed
by gwindow.

7

5.1 Using containers

In this next example, we show how to combine widgets together using containers.
(Figure 2.)

> win <- gwindow("Hello World, ad nauseum", visible=TRUE)

> group <- ggroup(horizontal = FALSE, container=win)

> obj <- gbutton("Hello...",container=group,

+ handler = function(h,...) gmessage("world"))

> obj <- glabel("Hello...", container =group,

+ handler = function(h,...) gmessage("world"))

> obj <- gcombobox(c("Hello","world"), container=group)

> obj <- gedit("Hello world", container=group)

> obj <- gtext("Hello world", container=group, font.attr=list(style="bold"))

As before, the constructors gbutton, glabel, gedit and gtext create widgets
of different types 2. The button looks like a button. A label is used to show text
which may perhaps be edited. [Editing text isn’t implemented in all toolkits. and
in personal experience seems to be confusing to users.] A combobox allows a user
to select one of several items, or as illustrated can take user input. The gedit and
gtext constructors both create widgets for inputting text, in the first case for single
lines, and in the second for multiple lines using a text buffer.

Figure 2: Hello world example

2We refer to gbutton as a constructor, which it is, and also a widget class, which it technically
isn’t.

8

These widgets are packed into containers (see ?ggroup or ?gwindow). The base
container is a window, created with the gwindow function. A top-level window
only contains one widget, like a group, so we pack in a group container created
with ggroup. (Top-level windows also may contain menubars, toolbars and status-
bars.) The ggroup container packs in widgets from left to right or top to bottom.
Imagine each widget as a block which is added to the container. In this case, we
want the subsequent widgets packed in top to bottom so we used the argument
horizontal=FALSE.

For the button and label widgets, a handler is set so that when the widget is
clicked a message dialog appears showing “world.” Handlers are used to respond
to mouse-driven events. In this case the event of a widget being clicked. See
?gWidgetsRGtk-handlers for details on handlers.

Note the handler has signature (h,...) where h is a list with components obj

referring to the widget the handler is called on, action referring to the value passed to
the action= argument and perhaps others (eg. dropdata for drag-and-drop events,
and x and y for ggraphics click events.). The ... in the signature, may contain
information passed along by the underlying toolkit and is necessary but not generally
employed.

The message is an instance of a “basic dialog” (see ?gWidgets-dialogs). The
dialogs in gWidgets are modal, meaning R’s event loop is stopped until the dialog is
answered. (This can be annoying if a dialog appears under another window and can’t
be seen!) As such, they don’t return an object which has methods defined for it, as
by the time they can be accessed they have been dismissed. Instead, they return a
value like a logical or a string.

6 Making a confirmation dialog

Let’s see how we might use widgets to create our own confirmation dialog, one which
is not modal. We want to have an icon, a label for the message, and buttons to
confirm or dismiss the dialog.

The gimage constructor allows images to be shown in a widget. In gWidget-
sRGtk there are several stock images, which can be listed with getStockIcons. We
will use “info” below.

First we define a function for making a dialog. This one uses nested group con-
tainers to organize the layout. (Alternately the glayout constructor could have been
used in some manner.)

> confirmDialog <- function(message, handler=NULL) {

9

+ window <- gwindow("Confirm")

+ group <- ggroup(container = window)

+ gimage("info", dirname="stock", size="dialog", container=group)

+

+ ## A group for the message and buttons

+ inner.group <- ggroup(horizontal=FALSE, container = group)

+ glabel(message, container=inner.group, expand=TRUE)

+

+ ## A group to organize the buttons

+ button.group <- ggroup(container = inner.group)

+ ## Push buttons to right

+ addSpring(button.group)

+ gbutton("ok", handler=handler, container=button.group)

+ gbutton("cancel", handler = function(h,...) dispose(window),

+ container=button.group)

+

+ return()

+ }

The key to making a useful confirmation dialog is attaching a response to a
click of the “ok” button. This is carried out by a handler, which are added using the
argument handler= for the constructor, or with one of the addHandlerXXX functions.
The handler below prints a message and then closes the dialog. To close the dialog,
the dispose method is called on the “ok” button widget, which is referenced inside
the handler by h$obj below. In gWidgets, handlers are passed information via the
first argument, which is a list with named elements. The $obj component refers to
the widget the handler is assigned to.

Trying it out produces a widget like that shown in Figure 3

> confirmDialog("This space for rent", handler = function(h,...) {

+ print("what to do... [Change accordingly]")

+ ## In this instance dispose finds its parent window and closes it

+ dispose(h$obj)

+ })

NULL

10

Figure 3: Confirmation dialog

7 Methods

Widgets are interacted with by their methods. The main methods are svalue and
svalue<- for getting and setting a widgets primary value.

The following silly example illustrates how clicking one widget can be used to
update another widget.

> w <- gwindow("Two widgets")

> g <- ggroup(container = w)

> widget1 <- gbutton("Click me to update the counter", container=g,

+ handler = function(h,...) {

+ oldVal <- svalue(widget2)

+ svalue(widget2) <- as.numeric(oldVal) + 1

+ })

> widget2 <- glabel(0, container=g)

The value stored in a label is just the text of the label. This is returned by svalue

and after 1 is added to the value, replaced back into the label. As text labels are of
class “character,” the value is coerced to be numeric.

There are other methods (see ?gWidgetsRGtk-methods) that try to make inter-
acting with a widget as natural (to an R user) as possible. For instance, a radio
button has a selected value returned by svalue, but also a vector of possible values.
These may be referenced using vector, [, notation. Whereas, a notebook container
has a names method which refers to the tab labels, which may be set via names<-

and a length method to return the number of notebook pages.

11

8 Adding a GUI to some common tasks

A GUI can make some command line tasks easier to perform. Here are a few examples
that don’t involve much coding in gWidgets.

8.1 file.choose

The file.choose function is great for simplifying a user’s choice of a file from the
file system. A typical usage might be

source(file.choose())

to allow a user to source a file with a little help from a GUI. However, in many
UNIX environments, there is no GUI for file.choose, only a more convenient curses
interface. With the gfile dialog, we can offer some improvement.

This dialog returns the name of the file selected, so that

source(gfile())

can replace the above.
More in keeping with the gWidgets style, though, would be to give a handler

when constructing the file chooser. The file component of the handler argument
gives the files name (not svalue(h$obj), as gfile does not return an object to call
svalue on). For example, the function below is written to give some flexibility to
the process:

> fileChoose <- function(action="print", text = "Select a file...",

+ type="open", ...) {

+ gfile(text=text, type=type, ..., action = action, handler =

+ function(h,...) {

+ do.call(h$action, list(h$file))

+ })

+ }

The action= argument parametrizes the action. The default above calls print

on the selected file name, hence printing the name. However, other tasks can now
be done quite simply. For example, to source a file we have:

> fileChoose(action="source")

Or to set the current working directory we have:

> fileChoose(action="setwd", type="selectdir", text="Select a directory...")

12

8.2 browseEnv

The browseEnv function creates a table in a web browser listing the current objects
in the global environment (by default) and details some properties of them. This
is an easy to use function, but suffers from the fact that it may have to open up a
browser for the user if none is already open. This may take a bit of time as browsers
are generally slow to load. We illustrate a means of using the gtable constructor to
show in a table the objects in an environment.

The following function creates the data.frame we will display. Consult the code
of browseEnv to see how to produce more details.

> lstObjects <- function(envir= .GlobalEnv, pattern) {

+ objlist <- ls(envir=envir, pattern=pattern)

+ objclass <- sapply(objlist, function(objName) {

+ obj <- get(objName, envir=envir)

+ class(obj)[1]

+ })

+ data.frame(Name = I(objlist), Class = I(objclass))

+ }

Now to make a table to display the results. We have some flexibility with the
arguments, which is shown in subsequent examples:

> browseEnv1 <- function(envir = .GlobalEnv, pattern) {

+ listOfObjects <- lstObjects(envir=envir, pattern)

+ gtable(listOfObjects, container = gwindow("browseEnv1"))

+ }

Tables can have a double click handler (typically a single click is used for selec-
tion). To illustrate, we add a handler which calls summary (or some other function)
on a double-clicked item [Qt’s behaviour is OS dependent]. (The first svalue returns
a character string, it is promoted to an object using get)

> browseEnv2 <- function(envir = .GlobalEnv, pattern, action="summary") {

+ listOfObjects <- lstObjects(envir=envir, pattern)

+ gtable(listOfObjects, container = gwindow("browseEnv2"),

+ action = action,

+ handler = function(h,...) {

+ print(do.call(h$action, list(get(svalue(h$obj)))))

+ })

+ }

13

As a final refinement, we add a combobox to filter by the unique values of “Class.”
We leave as an exercise the display of icons based on the class of the object.

> browseEnv3 <- function(envir = .GlobalEnv, pattern, action="summary") {

+ listOfObjects <- lstObjects(envir=envir, pattern)

+ gtable(listOfObjects,

+ container =gwindow("browseEnv3"),

+ filter.column = 2,

+ action = action,

+ handler = function(h,...) {

+ print(do.call(h$action, list(get(svalue(h$obj)))))

+ })

+ }

[The filter argument is not available with gWidgetsrJava or gWidgetsWWW.]
In gwidgetsRGtk2 The gvarbrowser function constructs a widget very similar

to this, only it uses a gtree widget to allow further display of list-like objects. [The
gtree widget is not implemented in all of the toolkits.]

9 A gWidgetsDensity demo

We illustrate how to make a widget dynamically update a density plot. The idea
comes from the tkdensity demo that accompanies the tcltk package due to, I be-
lieve, Martin Maechler.

We use the ggraphics constructor to create a new plot device. For RGtk2, this
uses the cairoDevice package also developed by Michael Lawrence. (This package
takes some work to get going under OS X, as the easy-to-install RGtk2 libraries don’t
seem to like the package.)

[In gWidgetsrJava the JavaGD package is used for a JAVA device. In theory
this should be embeddable in a gWidgets container, but it isn’t implemented, so a
new window is created.]

[In gWidgetstcltk there is no embeddable graphics device. (The tkrplot is
different.) The ggraphics call would just put in a stub.]

This demo consists of a widget to control a random sample, in this case from the
standard normal distribution or the exponential distribution with rate 1; a widget
to select the sample size; a widget to select the kernel; and a widget to adjust the
default bandwidth. We use radio buttons for the first two, a drop list for the third
and a slider for the latter.

14

The gWidgetstcltk package is a little different from the other two, as it requires
that a container be non-null. This is because the underlying tcltk widgets need
to have a parent container to be initialized. As such, the following won’t work. A
working example will be given next for comparison. This one is left here, as the
separation of GUI building into: widget definition; widget layout; and assignment of
handlers, or call backs, seems to lead to easier to understand code.

Proceeding, first we define the two distributions and the possible kernels.

> ## set up

> availDists <- c(Normal="rnorm", Exponential="rexp")

> availKernels <- c("gaussian", "epanechnikov", "rectangular",

+ "triangular", "biweight", "cosine", "optcosine")

We then define the key function for drawing the graphic. This refers to widgets
yet to be defined.

> updatePlot <- function(h,...) {

+ x <- do.call(availDists[svalue(distribution)],list(svalue(sampleSize)))

+ plot(density(x, adjust = svalue(bandwidthAdjust),

+ kernel = svalue(kernel)),main="Density plot")

+ rug(x)

+ }

Now to define the widgets.

> distribution <- gradio(names(availDists), horizontal=FALSE, handler=updatePlot)

> kernel <- gcombobox(availKernels, handler=updatePlot)

> bandwidthAdjust <- gslider(from=0,to=2,by=.01, value=1, handler=updatePlot)

> sampleSize <- gradio(c(50,100,200, 300), handler = updatePlot)

Now the layout. We use frames to set off the different arguments. A frame is like
a group, only it has an option for placing a text label somewhere along the top. The
position is specified via the pos argument, with a default using the left-hand side.

> ## now layout

> window <- gwindow("gWidgetsDensity")

> BigGroup <- ggroup(cont=window)

> group <- ggroup(horizontal=FALSE, container=BigGroup)

> tmp <- gframe("Distribution", container=group)

> add(tmp, distribution)

15

Figure 4: The gWidgetsDensity example in action.

> tmp <- gframe("Sample size", container=group)

> add(tmp,sampleSize)

> tmp <- gframe("Kernel", container=group)

> add(tmp,kernel)

> tmp <- gframe("Bandwidth adjust", container=group)

> add(tmp,bandwidthAdjust, expand=TRUE)

Now to add a graphics device.

> add(BigGroup, ggraphics())

[Again, if using gWidgetsrJava this wouldn’t place the device inside the BigGroup

container.]
A realization of this widget was captured in Figure 4.
Now, as promised, we present a function that would work under any of the toolk-

its. The ggraphics call is not included, as this doesn’t work with gWidgetstcltk.
The key difference though is the containers are included in the creation of the wid-
gets. The arguments that would be passed to add are included in the construction
of the widget.

> gwtkdensity <- function() {

+

+ ## set up

16

+ availDists <- c(Normal = "rnorm", Exponential="rexp")

+ availKernels <- c("gaussian", "epanechnikov", "rectangular",

+ "triangular", "biweight", "cosine", "optcosine")

+

+

+ updatePlot <- function(h,...) {

+ x <- do.call(availDists[svalue(distribution)],list(svalue(sampleSize)))

+ plot(density(x, adjust = svalue(bandwidthAdjust), kernel = svalue(kernel)))

+ rug(x)

+ }

+

+ ##The widgets

+ win <- gwindow("gwtkdensity")

+ gp <- ggroup(horizontal=FALSE, cont=win)

+

+ tmp <- gframe("Distribution", container=gp, expand=TRUE)

+ distribution <- gradio(names(availDists), horizontal=FALSE,

+ cont=tmp,

+ handler=updatePlot)

+

+

+ tmp <- gframe("Sample size", container=gp, expand=TRUE)

+ sampleSize <- gradio(c(50,100,200, 300), cont=tmp,

+ handler =updatePlot)

+

+

+ tmp <- gframe("Kernel", container=gp, expand=TRUE)

+ kernel <- gcombobox(availKernels, cont=tmp,

+ handler=updatePlot)

+

+ tmp <- gframe("Bandwidth adjust", container=gp, expand=TRUE)

+ bandwidthAdjust <- gslider(from=0,to=2,by=.01, value=1,

+ cont=tmp, expand=TRUE,

+ handler=updatePlot)

+

+ }

17

10 Composing email

This example shows how to write a widget for composing an email message. Not that
this is what R is intended for, but rather to show how a familiar widget is produced
by combining various pieces from gWidgets. This example is a little lengthy, but
hopefully straightforward due to the familiarity with the result of the task.

For our stripped-down compose window we want the following: a menubar to
organize functions; a toolbar for a few common functions; a “To:” field which should
have some means to store previously used e-mail addresses; a “From:” field that
should be editable, but not obviously so as often it isn’t edited; a “Subject:” field
which also updates the title of the window; and a text buffer for typing the message.

The following code will create a function called Rmail (apologies to any old-time
emacs users) which on many UNIX machines can send out e-mails using the sendmail
command.

This is not written to work with gWidgetstcltk.
First we define some variables:

> FROM <- "gWidgetsRGtk <gWidgetsRGtk@gmail.com>"

> buddyList <- c("My Friend <myfriend@gmail.com>","My dog <mydog@gmail.com>")

Now for the main function. We define some helper functions inside the body, so
as not to worry about scoping issues.

> Rmail <- function(draft = NULL, ...) {

+ ## We use a global list to contain our widgets

+ widgets <- list()

+

+

+ ## Helper functions

+ sendIt <- function(...) {

+ tmp <- tempfile()

+

+ cat("To:", svalue(widgets$to),"\n",file = tmp, append=TRUE)

+ cat("From:", svalue(widgets$from),"\n", file=tmp, append=TRUE)

+ cat("Subject:", svalue(widgets$subject),"\n", file=tmp, append=TRUE)

+ cat("Date:", format(Sys.time(),"%d %b %Y %T %Z"),"\n", file=tmp, append=TRUE)

+ cat("X-sender:", "R", file=tmp, append=TRUE)

+ cat("\n\n", file=tmp, append=TRUE)

+ cat(svalue(widgets$text), file=tmp, append=TRUE)

+ cat("\n", file=tmp, append=TRUE)

18

+

+ ## Use UNIX sendmail to send message

+ system(paste("sendmail -t <", tmp))

+ ## Add To: to buddyList

+ if(exists("buddyList"))

+ assign("buddyList", unique(c(buddyList,svalue(widgets$to))), inherits=TRUE)

+

+ ## Close window, delete file

+ unlink(tmp)

+ dispose(window)

+ }

+

+ ## Function to save a draft to the file draft.R

+ saveDraft <- function(...) {

+ draft <- list()

+ sapply(c("to","from","subject","text"), function(i)

+ draft[[i]] <<- svalue(widgets[[i]])

+)

+ dump("draft","draft.R")

+ cat("Draft dumped to draft.R\n")

+ }

+

+ ## A simple dialog

+ aboutMail <- function(...) gmessage("Sends a message")

+

+ ## Make main window from top down

+

+ window <- gwindow("Compose mail", visible=FALSE)

+ group <- ggroup(horizontal=FALSE, spacing=0, container = window)

+ ## Remove border

+ svalue(group) <- 0

+

+ actions <- list(save=gaction("Save", icon="save", handler=saveDraft),

+ send=gaction("Send", icon="connect", handler=sendIt),

+ quit=gaction("Quit", icon="quit", handler=function(...) dispose(window)),

+ about=gaction("About", icon="about", handler=aboutMail))

+

+ ## Menubar is defined by the actions, but we nest under File menu

19

+ menubarlist <- list(File=actions)

+ gmenu(menubarlist, cont = window)

+

+ ## Toolbar is also defined by the actions

+ toolbarlist <- actions[-4]

+ gtoolbar(toolbarlist, cont=window)

+

+

+ ## Put headers in a glayout() container

+ tbl <- glayout(container = group)

+

+

+ ## To: field. Looks for buddyList

+ tbl[1,1] <- glabel("To:", container = tbl)

+ tbl[1,2] <- (widgets$to <- gcombobox(c(""), editable=TRUE, container=tbl, expand=TRUE))

+ size(widgets$to) <- c(300, -1)

+ if(exists("buddyList")) widgets$to[] <- buddyList

+

+ ## From: field. Click to edit value

+ tbl[2,1] <- glabel("From:", container = tbl)

+ tbl[2,2] <- (widgets$from <- glabel(FROM, editable=TRUE, container=tbl))

+

+ ## Subject: field. Handler updates window title

+ tbl[3,1] <- glabel("Subject:", container=tbl)

+ tbl[3,2] <- (widgets$subject <- gedit("",container=tbl))

+ addHandlerKeystroke(widgets$subject, handler = function(h,...)

+ svalue(window) <- paste("Compose mail:",svalue(h$obj),collapse=""))

+

+ ## Add text box for message, but first some space

+ addSpace(group, 5)

+ widgets$text <- gtext("", container = group, expand=TRUE)

+

+

+ ## Handle drafts. Either a list or a filename to source")

+ ## The generic svalue() method makes setting values easy")

+ if(!is.null(draft)) {

+ if(is.character(draft))

+ sys.source(draft,envir=environment()) # source into right enviro

20

+ if(is.list(draft)) {

+ sapply(c("to","from","subject","text"), function(i) {

+ svalue(widgets[[i]]) <- draft[[i]]

+ })

+ }

+ }

+

+ visible(window) <- TRUE

+ ## That's it.

+

+ }

>

To compose an e-mail we call the function as follows. (The widget constructed
looks like Figure 5.)

> Rmail()

Figure 5: Widget for composing an e-mail message. (Needs a grammar checker.)

The Rmail function uses a few tricks. A combobox is used to hold the “To:” field.
This is done so that a “buddy list” can be added if present. The [<- method for
comboboxes make this straightforward. For widgets that have a collection of items
to select from, the vector and matrix methods are defined to make changing values
familiar to R users. (Although the use of the method [<- for glayout containers can
cause confusion, as no [method exists due to the indexing referring to coordinates
and not indexes.)

21

The “From:” field uses an editable label. Clicking in the label’s text allows its
value to be changed. Just hit ENTER when done. 3

The handler assigned to the “Subject:” field updates the window title every
keystroke. The title of the window is updated with the windows svalue<- method.

The svalue and svalue<- methods are the work-horse methods of gWidgets.
The are used to retrieve the selected value of a widget or set the selected value of a
widget. One advantage to have a single generic function do this is illustrated in the
handling of a draft:

sapply(c("to","from","subject","text"), function(i)

svalue(widgets[[i]]) <- draft[[i]])

(Another work-horse method is addHandlerChanged which can be used to add
a handler to any widget, where “changed” – being a generic function – is loosely
interpreted: i.e., for buttons, it is aliased to addHandlerClicked.

As for the sendIt function, this is just one way to send an e-mail message on a
UNIX machine. There are likely more than 100 different ways clever people could
think of doing this task, most better than this one.

To make portable code, when filling in the layout container, the widget construc-
tors use the layout container as the parent container for the new widget.

11 An expanding group

As an example of the add and delete methods of a container, we show how one
could create the gexpandgroup widget, were it not implemented by the underlying
toolkit (eg. gWidgetstcltk). This container involves an icon to click on to show
the container and a similar icon to hide the container. A label indicates to the user
what is going on.

> ## expand group

> rightArrow <- system.file("images/1rightarrow.gif",package="gWidgets")

> downArrow <- system.file("images/1downarrow.gif",package="gWidgets")

> g <- ggroup(horizontal=FALSE,cont=T)

> g1 <- ggroup(horizontal=TRUE, cont=g)

> icon <- gimage(downArrow,cont=g1)

> label <- glabel("Expand group example", cont=g1)

3Editable labels seemed like a good idea at the time – they were borrowed from gmail’s interface
– but in experience they seem to be confusing to users. YMMV.

22

> g2 <- ggroup(cont=g, expand=TRUE)

> expandGroup <- function() add(g,g2, expand=TRUE)

> hideGroup <- function() delete(g,g2)

> state <- TRUE # a global

> changeState <- function(h,...) {

+ if(state) {

+ hideGroup()

+ svalue(icon) <- rightArrow

+ } else {

+ expandGroup()

+ svalue(icon) <- downArrow

+ }

+ state <<- !state

+ }

> addHandlerClicked(icon, handler=changeState)

> addHandlerClicked(label, handler=changeState)

> gbutton("Hide by clicking arrow", cont=g2)

guiWidget of type: gButtontcltk for toolkit: guiWidgetsToolkittcltk

>

As an alternative to using the global state variable, the tag function could be
used. This is like attr only it stores the value with the widget – not a copy – so can
be used within a handler to propogate changes outside the scope of the handler call.
For instance, the changeState function could have been written as

> tag(g,"state") <- TRUE # a global

> changeState <- function(h,...) {

+ if(tag(g,"state")) {

+ hideGroup()

+ svalue(icon) <- rightArrow

+ } else {

+ expandGroup()

+ svalue(icon) <- downArrow

+ }

+ tag(g,"state") <- !tag(g,"state")

+ }

23

Other alternatives to using global variables include using environments or the
proto package for proto objects. These objects are passed not by copy, but by
reference so changes within a function are reflected outside the scope of the function.

12 Drag and drop

GTK supports drag and drop features, and the gWidgets API provides a simple
mechanism to add drag and drop to widgets. (Some widgets, such as text boxes,
support drag and drop without these in GTK.) The basic approach is to add a drop
source to the widget you wish to drag from, and add a drop target to the widget you
want to drag to. You can also provide a handler to deal with motions over the drop
target. See the man page ?gWidgetsRGtk-dnd for more information.

[In gWidgetsQt drag and drop support is very limited.]
[In gWidgetsrJava drag and drop is provided through Java and not gWidgets.

One can drag from widget to widget, but there is no way to configure what happens
when a drop is made, or what is dragged when a drag is initiated.]

[In gWidgetstcltk drag and drop works but not from other applications.]
We give two examples of drag and drop. One where variables from the variable

browser are dropped onto a graph widget. Another illustrating drag and drop from
the data frame editor to a widget.

12.1 DND with plots

This example shows the use of the plot device, the variable browser widget, and the
use of the drag and drop features of gWidgets (Figure 6).

> doPlot <- function() {

+ ## Set up main group

+ mainGroup <- ggroup(container=gwindow("doPlot example"))

+

+ ## The variable browser widget

+ gvarbrowser(container = mainGroup)

+

+ rightGroup <- ggroup(horizontal=FALSE, container=mainGroup)

+

+ ## The graphics device

+ ggraphics(container=rightGroup)

+ entry <- gedit("drop item here to be plotted", container=rightGroup)

24

+ adddroptarget(entry,handler = function(h,...) {

+ do.call("plot",list(svalue(h$dropdata),main=id(h$dropdata)))

+ })

+ }

> doPlot()

Figure 6: Dialog produced by doPlot example

The basic structure of using gWidgets is present in this example. The key wid-
gets are the variable browser (gvarbrowser), the plot device (ggraphics), and the
text-entry widget (gedit). (One can see an RGtk2 bias here, as the other imple-
mentations do not currently have an embeddable graphics device.) These are put
into differing containers. Finally, there is an handler given to the result of the drag
and drop. The do.call line uses the svalue and id methods on a character, which
in this instance returns the variable with that name and the name.

To use this widget, one drags a variable to be plotted from the variable browser
over to the area below the plot window. The plot method is called on the values in
the dropped variable.

The gvarbrowser produces a widget from which a drop source has been added.
To drop from a different source the addDropSource method is used. The return value
of the handler will be passed to the dropdata value of the handler for addDropTarget.

[The latter varies from toolkit to toolkit, in gWidgetsrJava both are ignored,
in RGtk2 some widgets have built-in drag and drop which can be overridden, and
in gWidgetstcltk everything must be done using the gWidgets interface, as drag
and drop is not naturally implemented by the toolkit.]

25

13 Notebooks

The notebook is a common metaphor with computer applications, as they can give
access to lots of information compactly on the screen. The gnotebook constructor
produces a notebook widget. New pages are added via the add method (which is
called behind the scenes when a widget is constructed), the current page is deleted
through an icon [not implemented in gWidgetsrJava], or via the dispose method,
and vector methods are defined, such as names, to make interacting with notebooks
natural (the names refer to the tab labels.) One can also add pages when constructing
a widget using the notebook as the container and passing in an extra argument label.

The following example shows how a notebook can be used to organize different
graphics devices.

[In gWidgetsRGtk2 the ggraphicsnotebook function produces a similar wid-
get. However, this is not possible if using gWidgetsrJava, as the graphic devices
can’t currently be embedded in a notebook page.]

Our widget consists of a toolbar to add or delete plots and a notebook to hold
the different graphics devices. The basic widgets are defined by the following:

First we make window and group containers to hold our widgets and then a
notebook instance.

> win <- gwindow("Plot notebook")

> group <- ggroup(horizontal = FALSE, container=win)

> nb <- gnotebook(container = group, expand=TRUE)

(expand=TRUE causes the child widget – the notebook – to expand to take as much
space as allotted.)

Next, we begin with an initial plot device.

> ggraphics(container = nb, label="plot")

The label argument goes on the tab, as it is passed to the notebook’s add method.
Now we define and add a toolbar.

> tblist <- list(quit=gaction("Quit", icon="quit", handler=function(...) dispose(win)),

+ separator=gseparator(),

+ new=gaction("New", icon="new", handler=function(h,...) add(nb,ggraphics(),label="plot")),

+ delete=gaction("Delete", icond="delete", handler=function(...) dispose(nb))

+)

> gtoolbar(tblist, cont=group)

guiWidget of type: gToolbartcltk for toolkit: guiWidgetsToolkittcltk

26

The dispose method is used both to close the window, and to close a tab on the
notebook (the currently selected one).

Figure 7: Notebook widget for holding multiple plot devices provided by ggraphics

That’s it (Figure 7). There is one thing that should be added. If you switch
tabs, the active device does not switch. This happens though if you click in the plot
area. To remedy this, you can think about the addHandlerChanged method for the
notebook, or just use ggraphicsnotebook.

14 The tree widget

The gtree constructor [this widget is only implemented in gWidgetsRGtk2.] is
used to present tree-like data. A familiar example of such data is the directory
structure of your computer. To display a tree, gtree needs to know what to display
(the offspring) and which offspring have further offspring. idea of a node which
consists of a path back to a root node. The offspring are determined by a function

27

(offspring) which takes the current path (ancestor information), and a passed in
parameter as arguments. These offspring can either have subsequent offspring or not.
This information must be known at the time of displaying the current offspring, and
is answered by a function (hasOffspring) which takes as an argument the offspring.
In our file-system analogy, offspring would list the files and directories in a given
directory, and hasOffspring would be TRUE for a directory in this listing, and FALSE

for a file. For decorations, a function icon.FUN can be given to decide what icon to
draw for which listing. This should give a stock icon name.

The data presented for the offspring is a data frame, with one column determining
the path. This is typically the first column, but can be set with chosencol=.

To illustrate, we create a file system browser using gtree. (This is for UNIX
systems. change the file separator for windows.)

First to define the offspring function we use the file.info function. The
current working directory is used as the base node for the tree:

> ## function to find offspring

> offspring <- function(path, user.data=NULL) {

+ if(length(path) > 0)

+ directory <- paste(getwd(),"/",paste(path,sep="/", collapse=""),sep="",collapse="")

+ else

+ directory <- getwd()

+ tmp <- file.info(dir(path=directory))

+ files <- data.frame(Name=rownames(tmp), isdir=tmp[,2], size=as.integer(tmp[,1]))

+ return(files)

+ }

The offspring function is determined by the isdir column in the offspring data
frame.

> hasOffspring <- function(children,user.data=NULL, ...) {

+ return(children$isdir)

+ }

Finally, an icon function can be given as follows, again using the isdir column.

> icon.FUN <- function(children,user.data=NULL, ...) {

+ x <- rep("file",length= nrow(children))

+ x[children$isdir] <- "directory"

+ return(x)

+ }

28

The widget is then constructed as follows. See Figure 8 for an example.

> gtree(offspring, hasOffspring, icon.FUN = icon.FUN,

+ container=gwindow(getwd()))

guiWidget of type: gTreetcltk for toolkit: guiWidgetsToolkittcltk

Figure 8: Illustration of a file browser using gtree constructor.

The presence of the isdir column may bug some. It was convenient when defining
hasOffspring and icon.FUN, but by then had served its purpose. One way to
eliminate it, is to use the default for the hasOffspring= argument which is to look
for the second column of the data frame produced by offspring. If this column is
of class logical, it is used to define hasOffspring and is then eliminated from the
display. That is, the following would produce the desired file browser:

> gtree(offspring, icon.FUN = icon.FUN,

+ container=gwindow(getwd()))

guiWidget of type: gTreetcltk for toolkit: guiWidgetsToolkittcltk

Finally, the handler= argument (or addHandlerDoubleclick) could have been
used to give an action to double clicking of an item in the tree.

15 Popup menus

A popup menu “pops” up a menu after a mouse click, typically a right mouse click.
Implemented in gWidgets are the functions

29

add3rdmousepopupmenu for adding a popup on a right click

addpopupmenu for adding a popup on any click

The menu is specified using the syntax for gmenu.

A simple example would be something like:

> w <- gwindow("Click on button to change")

> g <- ggroup(cont = w) # abbreviate container

> glabel("Hello ", cont=g)

guiWidget of type: gLabeltcltk for toolkit: guiWidgetsToolkittcltk

> world <- gbutton("world", cont=g)

> lst <- list()

> lst$world$handler <- function(h,...) svalue(world) <- "world"

> lst$continent$handler <- function(h,...) svalue(world) <- "continent"

> lst$country$handler <- function(h,...) svalue(world) <- "country"

> lst$state$handler <- function(h,...) svalue(world) <- "state"

> addPopupmenu(world, lst)

<Tcl>

Clicking on “world” with the mouse allows one to change the value in the label.

16 Defining layouts with gformlayout

The gformlayout constructor allows one to define the layout of a GUI using a list.
The details of the list are in the man page, but the list has a relatively simple
structure. Each widget is specified using a list. The widget type is specified through
the type component as a string. These may be containers or widgets or the special
container fieldset. For containers, the component children is used to specify
the children to pack in. These again are specified using a list, and except for the
fieldset container may again contain containers. The name argument is used to
have the newly created component stored in a list of widgets for later manipulations.
There are means to control whether a component is enabled or not based on a
previously defined component, such as a checkbox. (This works much better under

30

gWidgetsRGtk2 than gWidgetstcltk as disabled parent containers do not disable
their children in the latter.)

This example comes from the man page. It shows how the “fieldset” container is
used with some of its arguments to modify the number of columns and adjust the
default label placements.

We present the final list, tTest using some predefined lists that could be recycled
for other GUIs if desired.

> ## layout a collection of widgets to generate a t.test

>

> ## widgets to gather the variable(s)

> varList <- list(type="fieldset",

+ columns = 2,

+ label = "Variable(s)",

+ label.pos = "top",

+ label.font = c(weight="bold"),

+ children = list(

+ list(name = "x",

+ label = "x",

+ type = "gedit",

+ text = ""),

+ list(name = "y",

+ label = "y",

+ type = "gedit",

+ text = "",

+ depends.on = "x",

+ depends.FUN = function(value) nchar(value) > 0,

+ depends.signal = "addHandlerBlur"

+)

+)

+)

> ## list for alternative

> altList <- list(type = "fieldset",

+ label = "Hypotheses",

+ columns = 2,

+ children = list(

+ list(name = "mu",

+ type = "gedit",

+ label = "Ho: mu=",

31

+ text = "0",

+ coerce.with = as.numeric),

+ list(name = "alternative",

+ type="gcombobox",

+ label = "HA: ",

+ items = c("two.sided","less","greater")

+)

+)

+)

> ## now make t-test list

> tTest <- list(type = "ggroup",

+ horizontal = FALSE,

+ children = list(

+ varList,

+ altList,

+ list(type = "fieldset",

+ label = "two sample test",

+ columns = 2,

+ depends.on = "y",

+ depends.FUN = function(value) nchar(value) > 0,

+ depends.signal = "addHandlerBlur",

+ children = list(

+ list(name = "paired",

+ label = "paired samples",

+ type = "gcombobox",

+ items = c(FALSE, TRUE)

+),

+ list(name = "var.equal",

+ label = "assume equal var",

+ type = "gcombobox",

+ items = c(FALSE, TRUE)

+)

+)

+),

+ list(type = "fieldset",

+ columns = 1,

+ children = list(

+ list(name = "conf.level",

32

+ label = "confidence level",

+ type = "gedit",

+ text = "0.95",

+ coerce.with = as.numeric)

+)

+)

+)

+)

> ## Code to call the layout

> w <- gwindow("t.test")

> g <- ggroup(horizontal = FALSE, cont = w)

> fl <- gformlayout(tTest, cont = g, expand=TRUE)

> bg <- ggroup(cont = g)

> addSpring(bg)

> b <- gbutton("run t.test", cont = bg)

> addHandlerChanged(b, function(h,...) {

+ out <- svalue(fl)

+ out$x <- svalue(out$x) # turn text into numbers

+ if(out$y == "") {

+ out$y <- out$paired <- NULL

+ } else {

+ out$y <- svalue(out$y)

+ }

+ ## easy, not pretty

+ print(do.call("t.test",out))

+ })

>

17 Making widgets from an R function

A common task envisioned for gWidgets is to create GUIs that make collecting the
arguments to a function easier to remember or enter. Presented below are two ways
to do so without having to do any programming, provided you are content with the
layout and features provided.

33

17.1 Using ggenericwidget

The ggenericwidget constructor maps a list into a widget. The list contains two
types of information: meta information about the widget, such as the name of the
function, and information about the widgets. This is specified using a list whose first
component is the constructor, and subsequent components are fed to the constructor.

To illustrate, a GUI for a one sample t-test is given. The list used by ggenericwidget

is defined below.

> lst <- list()

> lst$title <- "t.test()"

> lst$help <- "t.test"

> lst$variableTypes <- "univariate"

> lst$action <- list(beginning="t.test(",ending=")")

> lst$arguments$hypotheses$mu <-

+ list(type = "gedit",text=0,coerce.with=as.numeric)

> lst$arguments$hypotheses$alternative <-

+ list(type="gradio", items=c("'two.sided'","'less'","'greater'")
+)

This list is then given to the constructor.

> ggenericwidget(lst, container=gwindow("One sample t test"))

Although this looks intimidating, due to the creation of the list, there is a function
autogenerategeneric that reduces the work involved. In particular, if the argument
to ggenericwidget is a character, then it is assumed to be the name of a function.
From the arguments of this function, a layout is guessed.

17.2 An alternative to ggenericwidget

This next example shows a different (although ultimately similar) way to produce a
widget for a function. One of the points of this example is to illustrate the power
of having common method names for the different widgets. Of course, the following
can be improved. Two obvious places are the layout of the automagically generated
widget, and and the handling of the initial variable when a formula is expected.

> ## A constructor to automagically make a GUI for a function

> gfunction <- function(f, window = gwindow(title=fName), ...) {

+

34

+ ## Get the function and its name

+ if(is.character(f)) {

+ fName <- f

+ f <- get(f)

+ } else if(is.function(f)) {

+ fName <- deparse(substitute(f))

+ }

+

+ ## Use formals() to define the widget

+ lst <- formals(f)

+

+

+

+ ## Hack to figure out variable type

+ type <- NULL

+ if(names(lst)[1] == "x" && names(lst)[2] == "y") {

+ type <- "bivariate"

+ } else if(names(lst)[1] == "x") {

+ type <- "univariate"

+ } else if(names(lst)[1] == "formula") {

+ type <- "model"

+ } else {

+ type + NULL

+ }

+

+

+ ## Layout

+

+ w <- gwindow("create dialog")

+ g <- ggroup(horizontal = TRUE, cont=w)

+ ## Arrange widgets with an output area

+ ## Put widgets into a layout container

+ tbl <- glayout(container=g)

+ gseparator(horizontal=FALSE, container=g)

+ outputArea <- gtext(container=g, expand=TRUE)

+

+

+ ## Make widgets for arguments from formals()

35

+ widgets <- sapply(lst, getWidget, cont=tbl)

+

+ ## Layout widgets

+ for(i in 1:length(widgets)) {

+ tbl[i,1] <- names(lst)[i]

+ tbl[i,2] <- widgets[[i]]

+ }

+

+

+ ## Add update handler to each widget when changed

+ sapply(widgets, function(obj) {

+ try(addHandlerChanged(obj, function(h,...) update()), silent=TRUE)

+ })

+

+ ## Add drop target to each widget

+ sapply(widgets, function(obj)

+ try(adddroptarget(obj,

+ handler=function(h,...) {

+ svalue(h$obj) <- h$dropdata

+ update()

+ }),

+ silent=TRUE))

+

+

+

+ ## In case this doesn't get exported

+ svalue.default <- function(obj, ...) obj

+

+ ## Function used to weed out 'NULL' values to widgets

+ isNULL <- function(x)

+ ifelse(class(x) == "character" && length(x) ==1 && x == "NULL",

+ TRUE, FALSE)

+

+ ## Function called when a widget is changed

+ ## 2nd and 3rd lines trim out non-entries

+ update <- function(...) {

+ is.empty <- function(x) return(is.na(x) || is.null(x) || x == "")

+ outList <- lapply(widgets,svalue)

36

+ outList <- outList[!sapply(outList,is.empty)]

+ outList <- outList[!sapply(outList,isNULL)]

+ outList[[1]] <- svalue(outList[[1]])

+ if(type == "bivariate")

+ outList[[2]] <- svalue(outList[[2]])

+

+ out <- capture.output(do.call(fName,outList))

+

+ dispose(outputArea)

+ if(length(out)>0)

+ add(outputArea, out)

+ }

+ invisible(NULL)

+ }

The getWidget function takes a value from formals and maps it to an appropri-
ate widget. For arguments of type call the function recurses.

> getWidget <- function(x, cont=cont) {

+ switch(class(x),

+ "numeric" = gedit(x, coerce.with=as.numeric, cont=cont),

+ "character" = gcombobox(x, active=1, cont=cont),

+ "logical" = gcombobox(c(TRUE,FALSE), active = 1 + (x == FALSE), cont=cont),

+ "name" = gedit("", cont=cont),

+ "NULL" = gedit("NULL", cont=cont),

+ "call" = getWidget(eval(x), cont=cont), # recurse

+ gedit("", cont=cont) # default

+)

+ }

We can try this out on the default t.test function. First we grab a local copy
from the namespace, then call our function. The widget with an initial value for x is
shown in Figure 9.

37

Figure 9: Illustration of gfunction

38

	Background
	Overview
	Installation
	Installing the GTK libraries
	Install the R packages

	Loading gWidgets
	Hello world
	Using containers

	Making a confirmation dialog
	Methods
	Adding a GUI to some common tasks
	file.choose
	browseEnv

	A gWidgetsDensity demo
	Composing email
	An expanding group
	Drag and drop
	DND with plots

	Notebooks
	The tree widget
	Popup menus
	Defining layouts with gformlayout
	Making widgets from an R function
	Using ggenericwidget
	An alternative to ggenericwidget

