Plotting regression surfaces with plotmo

o | ‘ o _
m m
o o
S S
S s, S
" =
© 4 T |.|. o-l.l.lllll
20 4 60 8 30 50 70 90
humidity temp

Stephen Milborrow

June 1, 2021

Contents
1 Introduction
2 Examples

3 Limitations
3.1 Inherent limitations
3.2 Practical limitations

4 Alternatives to plotmo

5 Some details
5.1 Pagelayout

5.2 The type and nresponse arguments

5.3 Background variables
5.4 The ylim and clip arguments .

6 Which variables get plotted?

7 Notes on miscellaneous packages

7.1 The MASS package and 1daand qda

8 Classification models
8.1 Multinomial models

9 Partial-dependence plots (the pmethod argument)

9.1 Anexample

9.2 Approximate partial-dependence plots
9.3 Transforming the response for partial dependencies

10 Prediction intervals (the level argument)

11 FAQ

12 Common error messages

13 Accessing the model data
13.1 Method functions
13.2 Environment for the model data

(SR

00~ ~1 ~1

10
11

12
14

15
15
16
16

18

20

22

1 Introduction

The plotmo function in the plotmo R package [17] makes it easy to plot regression
surfaces for a model. These plots can be useful for understanding the model.

The plots on the title page of this document are examples—those plots are for a random
forest, but plotmo can be used on a wide variety of R models.

Plotmo automatically creates a separate plot for each variable in the model. Each such
degreel plot is generated by plotting the predicted response as the variable changes.
The top two plots on the title page are examples. The variables that don’t appear in
a plot are the background variables (or simply the “other” variables). In each plot the
background variables are held fixed at their median values (the medians are calculated
from the training data).

Plotmo can also show interactions between pairs of variables. A degree2 plot is gener-
ated by plotting the predicted response as two variables are changed (once again with
all other variables held at their median values). The bottom plot on the title page is
an example.

Plotmo invokes predict internally to generate the predicted response. Which specific
predict method gets invoked is determined by the model’s class — thus for say a
randomForest model, predict.randomForest is invoked.

Plotmo also supports partial dependence plots (Section 9), as an alternative to its de-
fault method of plotting which simply holds the background variables at their medians.

2 Examples

Here are some examples which illustrate plotmo on various models. Figure 1 shows the
resulting plots.

use a small set of variables for illustration
library(earth) # for ozonel data

data(ozonel)

oz <- ozonel[, c("03", "humidity", "temp", "ibt")]

Im.mod <- 1m(03 ~ humidity + temp*ibt, data=oz) ## linear model
plotmo(1lm.mod)

library(rpart) ## rpart
rpart.mod <- rpart(03 ~ ., data=oz)
plotmo(rpart.mod)

library(randomForest) ## randomForest
rf.mod <- randomForest(03 ~ ., data=oz)

plotmo(rf.mod)

partialPlot(rf.mod, oz, temp) # compare to partial dependence plot

library(gbm) ## gbm

gbm.mod <- gbm(03 ~ ., data=oz, dist="gaussian", inter=2, n.trees=1000)
plotmo (gbm.mod)
plot(gbm.mod, i.var=2) # compare to partial-dependence plots

plot(gbm.mod, i.var=c(2,3))

library(gam) ## gam

gam.mod <- gam(03 ~ s(humidity) + s(temp) + s(ibt), data=oz)
plotmo(gam.mod, all2=TRUE) # all2=TRUE to show interaction plots
library(nnet) ## nnet
set.seed(4)

nnet.mod <- nnet(03 ~ ., data=scale(oz), size=2, decay=0.01, trace=FALSE)

plotmo(nnet.mod, type="raw", all2=T) # type="raw" gets passed to predict

This is by no means an exhaustive list of models supported by plotmo. The packages
used in the above code are [9,11,20, 21, 23].

Im rpart randomForest

Figure 1: Plotmo graphs on various models, generated by the code in the text.

A single degree2 plot for each model is illustrated here, but by default plotmo
displays a set of plots on the same page for each model. See Section 6 “Which variables
get plotted?”.

3 Limitations

There are inherent limitations because the plots give only a partial view of the model.
There are also practical limitations to do with the way some models are built in R. This
section discusses these limitations in turn.

3.1 Inherent limitations

The plots can give only a partial view of the model. Each plot shows only a thin slice!
of the data with the background variables pegged at fixed values.

For example, in Figure 2 the response curve as x1 varies depends greatly on the value
of the other variable x2. Compare the response curve when x2 is at 15 (say) to the
curve when x2 is pegged at its median 72. Please be aware of this loss of information
when interpreting the graphs. Over-interpretation is a temptation.

Similar issues arise for partial-dependence plots, although harder to illustrate.

For a one variable model the regression surface is fully described by a degreel plot,
and for a two variable model by a degree2 plot. For additive models (no variable
interactions), the regression surface is fully described by the set of degreel plots.

More generally, models with many variables must be viewed in a piecemeal fashion by
looking at the action of one or two predictors at a time. The plots are most informa-
tive when the variables being plotted do not have strong interactions with the other
variables. Chapter 10 in the vignette for the rpart.plot package has a short discussion
on these topics.

1Each plot is a lower-dimensional “slice” through a higher-dimensional space, like a slice of bread
is a 2D plane through a 3D loaf. The slice doesn’t tell you what’s going on at the other end of the
loaf.

Figure 2: The shape
of the response curve
as x1 wvaries s quite
different for slices at
different values of x2.

This image Wllus-
trates 2D slices through
a 3D space. With a
typical multivariate
model the plotmo slices
are through a much
higher-dimensional
space.

http://www.milbo.org/doc/prp.pdf

3.2 Practical limitations

There are practical limitations to do with the way some models are built in R.

Plotmo needs to access the data used when building the model, so it can formulate new
data to pass to predict. For some models this isn’t possible. Some models don’t save
the call or any references to the original data. For details see Section 13 “Accessing
the model data”.

For the model to work with plotmo, it’s best to keep the variable names and formula
in the original call to the model-building function simple. Use temporary variables or
attach rather than using $ and similar in formulas. Error messages may be issued if
there are NAs in the data (it depends on the model). For more details see Section 12
“Common error messages” .

4 Alternatives to plotmo

There are many ways of condensing a multi-dimensional model onto the two dimensions
of a page. The technique used by plotmo is one of them. There is no silver bullet; large
amounts of information are necessarily discarded when the complexities of a model
must be plotted on a page.

Arguably the most important of such plots, although often overlooked, is the humble
residuals-vs-fitted plot. The residuals plot is helpful for detecting unusual observa-
tions and other potential issues with the data. The plotres function (also in the
plotmo package) is an easy way to make various residual plots for “any” model. See
the plotres vignette. Sometimes it’s also worthwhile plotting the residuals against the
variables or the model basis functions.

The termplot function in the standard stats package can be helpful, but it’s supported
by only a few models (the predict method for the model must support type="terms"),
and it doesn’t generate degree2 plots.

Partial dependence plots are a well-known technique for plotting regression sur-
faces. (See e.g. Hastie et al. [8] Section 10.13.2. To my knowledge, partial-dependence
plots were first described in Friedman’s gradient boosting paper [5].) Plotmo sets the
background variables to their median values, whereas in a partial-dependence plot at
each plotted point the effect of the background variables is averaged. Computing this
can take a long time. For the special case of decision trees, the effect of averaging can
be determined without actual brute force summation, so partial-dependence plots for
random forests and gbm’s can be generated quite quickly.

Note added Nov 2016: Plotmo now supports partial-dependence plots (Section 9).

In general, partial-dependence plots and plotmo plots will differ, but for additive models
(no interaction terms) the shape of the curves is identical although the scale may differ.
Partial-dependence plots incorporate more overall information than plotmo plots, but
it’s easier to understand in principle what the graph doesn’t show with plotmo than
with partial-dependence plots (Section 3.1 “Inherent limitations”).

The randomForest and gbm packages have functions for generating partial-dependence
plots for their respective models. The pdp [7] package, similar in spirit to plotmo, offers
partial dependence plots for a variety of models

Some other possibilities for plotting the response on a per-predictor basis are partial-
residual plots, partial-regression variable plots, and marginal-model plots (e.g. crPlots,
avPlots, and marginalModelPlot in the car package [2]). The effects package is also
of interest [3]. These packages are orientated towards linear and parametric models,
whereas plotmo is mainly for non-parametric models.

Quite a few methods have been invented specifically for random forests. Although each
tree in the forest is easy to interpret (a white box), the interaction between the large
number of trees in a random forest makes the model as a whole a black box. Techniques
such as plotmo thus become useful. See also the discussion on the CrossValidated web
page Obtaining-knowledge-from-a-random-forest.

http://www.milbo.org/doc/plotres-notes.pdf
http://stats.stackexchange.com/questions/21152/obtaining-knowledge-from-a-random-forest

5 Some details

This section covers a few details that are useful to know when using plotmo.

5.1 Page layout

Plotmo puts all the plots on a single page. That can be overridden with the do.par
argument.

Plotmo has special knowledge of some kinds of model. It uses that knowledge to plot
only important plots, to limit crowding on the page. For example, for earth models it
plots only the variables that are used in the final model, and for randomForest models it
plots only the most important variables. We can also explicitly specify which variables
get plotted by passing arguments to plotmo. For details see Section 6 “Which variables
get plotted?”.

5.2 The type and nresponse arguments

Some models can make different kinds of predictions. For example, for classification
models we can typically predict a response class or predict a probability. When calling
predict internally, by default plotmo tries to automatically select a suitable response
type for the model (often type="response"; use trace=1 to see what plotmo uses).
Explicitly tell plotmo what kind of prediction to plot using plotmo’s type argument.
This gets passed internally to predict.

The predict function for some models returns a matriz rather than a vector of predicted
values. For example, the predict function may return a two column matrix showing
absent and present probabilities. By default, plotmo tries to automatically select
which of these columns to display. Explicitly specify which column to use with plotmo’s
ncolumn argument, which can be a column number or column name if columns are
named.

Section 8 “Plotting classification models” gives some examples of using the type and
nresponse arguments.

Plotmo tries to use sensible default arguments for predict, but they won’t always be
correct (plotmo can’t know about the predict method for every kind of model). Change
the defaults if necessary using plotmo arguments with a predict. prefix. Plotmo passes
any argument prefixed with predict. directly to predict, after removing the prefix.
The plotres vignette has an example.

5.3 Background variables

As mentioned in the introduction, plotmo holds the background variables at their me-
dians. But if a background variable is a factor, then the most common level is used
instead of the median.

http://www.milbo.org/doc/plotres-notes.pdf

Change what values are used for the background variables with the grid.func and
grid.levels arguments. For example

grid.func = mean
or
grid.levels = list(sex="male", age=21)

Use these arguments in a for loop to make a grid of plots conditioned on background
variable values.

5.4 The ylim and clip arguments

Plotmo determines ylim (the vertical range) for the graphs automatically. If this auto-
matic ylim isn’t correct for your model, explicitly use the ylim argument when invoking
plotmo.

Here are some details. Typically we want all plots on a page to have the same ylim (the
same vertical axis limits), so we can see the effect of each variable relative to the other
variables. The obvious way for plotmo to automatically set ylim is to use the range
of predicted values over all the plots. However, a few wild predictions can make this
range very wide, and reduce resolution over all graphs. Therefore when determining
the range, plotmo ignores outlying predictions (unless clip=FALSE). Predictions that
are more than 50% beyond the range of the observed response are considered outlying.
In practice such outlying predictions are quite rare, but that depends on the model.

6 Which variables get plotted?

The default set of variables plotted for some common models is listed below [11,18,20-
22].

The default set of plots for the model may leave out some variables that we would like
to see. In that case, use al11=TRUE and/or al12=TRUE.

To limit the set of displayed variables use the degreel and degree2 arguments. Some-
times it’s useful to use all those arguments: first expand the set with all1l and all2,
then trim that back with degreel and degree2.

e carth

degreel variables in additive (non interaction) terms

degree?2 variables appearing together in interaction terms

e rpart

degreel variables used in the tree

degree?2 variables which appear in parent-child pairs in the tree

e randomForest

A 4 x 4 grid of plots (or less if fewer variables) as follows:

degreel The ten most important variables.
How importance is measured depends on whether model was built
with importance=TRUE, and whether the model is a regression
or classification model. Use trace=1 in the call to plotmo to see
which measure of importance is used.

degree?2 Pairs of the four most important variables (thus six degree2 plots).

° gbm

A 4 x 4 grid of plots (or less if fewer variables) as follows:

degreel The ten most important variables (measured by relative.influence).
Variables with relative.influence < 1% are ignored.

degree?2 Pairs of the four variables with the largest
importance (thus six degree2 plots)

e Im, glm gam, lda, etc.

These are processed using plotmo’s default methods (Section 13):
degreel all variables

degree?2 variables in the formula associated with each other by
terms like x1 * x2, x1:x2, and s(x1,x2)

7 Notes on miscellaneous packages

This section gives some specifics on how plotmo and plotres handle some miscellaneous
models [4,6,10,12,13,19-22, 26].

By default, predict.gbm is called with n.trees = object$n.trees

By default, predict.glmnet is called with type="response" and s = 0.
Change that by passing say predict.s=.02 to plotmo or plotres.

By default, predict.quantregForest is called with quantiles = .5
By default, predict.cosso is called with M = min(ncol (newdata), 2)

By default, predict.svm (e1071 package) is called with decision.values and probability
set to FALSE, but as usual we can change that by passing those arguments to plotmo
with a predict. prefix, and plotmo will use those values if specified.

For rpart models, plotres uses the rpart.plot package [14] if it’s available, else it
uses the plotting routines built into the rpart package.

For models built with the adabag package, plotmo’s type argument should be "votes",
"prob" (default), or "class" to select the corresponding field in predict.boosting’s
returned value. Plotmo’s nresponse argument will typically also be necessary to select
a column in the matrix of predicted values.

The predict methods for rq and rqs models (quantreg package) return multiple
columns, and plotmo chooses the column corresponding to tau=0.5. Plotmo will plot
prediction intervals if the quantreg model is built with say tau=c(.05, .5, .95) and
plotmo is called with the corresponding level argument, in this case level=0.90.

The neuralnet package doesn’t provide a predict method, but plotmo provides one
internally:

predict.nn(object, newdata=NULL, rep="mean", trace=FALSE)

where rep can be an integer, "best", or "mean" (default). These last two are equivalent
if the model was built with nrep=1. Examples:

plotres(nn.model, predict.rep="mean") # resids for mean prediction over all reps
plotres(nn.model) # same
plotres(nn.model, predict.rep="best") # resids for prediction from best rep

For biglm objects, only the residuals from the first call to biglm are plotted by plotres
(the residuals for subsequent calls to update aren’t plotted).

For €5.0 models (from the C50 package), variable selection works as in gbm models
(page 9) but with relative importance measured using C5imp.

10

7.1 The MASS package and 1da and qda

The predict methods for 1da and gda models (MASS package) are extended inter-
nally within plotmo to take a type argument. This can be one of "class" (default),
"posterior", or "response". This selects the "class", "posterior", or "x" field in
the value returned by predict.lda and predict.qda. Use the nresponse argument
to select a column within the selected field. Example (Figure 3):

library (MASS)
lcush <- data.frame(Type=as.numeric(Cushings$Type), log(Cushings[,1:2]))[1:21,]
gda.mod <- qda(Type ~ ., data=lcush)

plotmo(qgda.mod, # figure shown below
all2=TRUE, # show all interact plots
type2="image", # use image instead of persp for interact plot
ngrid2=200, # increase resolution in image plot

image.col=c("lightpink", "palegreenl", "lightblue"),
pt.col=as.numeric(Cushings$Type)+1, pt.pch=as.character(Cushings$Type))

for(nresponse in 1:3) # not shown
plotmo(qda.mod, type="post", nresponse=nresponse,
all2=TRUE, persp.border=NA)
persp.theta=30) # same theta for all plots so can compare

Tetrahydrocortisone Pregnanetriol

Figure 3: A qda
model of the log
Clushings data.

The background
colors in the inter-
action plot show
the predicted class.

The slightly messy

e o look of the a,b,c
- labels in the top
A C .
= - two plots is caused
£ o| % by plotmo’s au-
g b b . . .
gl bb tomatic jittering
* b of factor labels
" (see the jitter
? . argument).

T T T T T T
10 15 20 25 3.0 35 40
Tetrahydrocortisone

11

8 Classification models

This section discusses classification models, focusing on models with a two-class re-
sponse (where the classes simply may be TRUE and FALSE). This section repeats infor-
mation in other parts of this documents, but is geared towards users of classification
models.

With classification models we often have to take care to set plotmo’s type and nresponse
arguments appropriately (Section 5.2). The scale of the response plotted by plotmo is
determined by the type argument and possibly other arguments for predict. (These
get passed to predict via plotmo.) For example, for binomial glm models we can predict
probabilities (type="response", which can vary from 0 to 1) or log-odds (type="1ink",
which can vary from -infinity to +infinity, although in practice the response is restrained
to a reasonable range).

For some models, the predict method returns multiple columns, and we need to se-
lect the appropriate column using plotmo’s nresponse argument. For example, when
predicting probabilities for randomForest two-class models, predict.randomForest
returns two columns. We must use plotmo’s nresponse argument to select the column
for the class of interest. If we select the other column, the plotted curves will be upside
down.

For some classification models, plotmo doesn’t calculate ylim correctly. In that case,
explicitly pass ylim to plotmo. We see that being done in the svm example below.

Here are some example models with a two-class response. We use a subset of the iris
data for simplicity, and plot the probability of a virginica response. Figure 4 shows
the plots. Optionally add pmethod="partdep" to the calls to plotmo below to generate
partial-dependence instead of classical plotmo plots.

data(iris)

irisl <- data.frame(virginica = iris$Species == "virginica",
length = iris$Sepal.Length,
width = iris$Sepal.Width)

glm.mod <- glm(virginica™., data=irisl, family="binomial") ## glm

plotmo(glm.mod) # default type="response" returns probabilities

library(earth) ## earth
earth.mod <- earth(virginica™., data=irisl, degree=2, glm=list(family=binomial))
plotmo(earth.mod)

library(mgcv) ## mgcv gam
gam.mod <- gam(virginica™ s(length)+s(width), data=irisl, family=binomial())
plotmo (gam.mod)

library (gbm) ## gbm

gbm.mod <- gbm(virginica™., data=irisl, dist="bernoulli", inter=2, n.trees=1000)
plotmo (gbm.mod)

12

1 length 2 width

Figure 4: Predicted probabilities for
some two-class models.

1.0

0.0 05
N |
&)

o
S)
~
o
0.0 0i5

1.0

B B >~
. . . 20 3.0 40 glm
length

1.0

-

o |
© T T T T TT1
45 6.0 75 earth
1 length 2 width
o o
Lq_/ “
o o
o o \
STTTTTITTI ST T T gam
45 6.0 75 20 3.0 40
1 length 2 width 1 length: width
< g
m___—/ff__ 0|
o o
e N —
ol o] gbm
© TTTTTT1 ST T T T 1
45 6.0 75 20 3.0 40
1 length 2 width
o
w_|
e svm
o |
© TTTTTT1
45 6.0 75
1 length
o
g_d“jJV{_ randomForest
o |
© TTTTTT1
45 6.0 75
library(e1071) ## svm

iris.fac <- irisl # svm requires a factor for classification (not a logical)
iris.fac$virginica <- factor(ifelse(irisl$virginica,"yes","no"))

svm.mod <- svm(virginica™., data=iris.fac, type="C-classification", probability=TRUE)
plotmo knows how to handle predict.svm probability=TRUE

plotmo(svm.mod, predict.probability=TRUE, nresponse="yes", ylim=c(0,1))

library(randomForest) ## randomForest

iris.fac <- irisl # randomForest requires a factor for classification (not a logical)
iris.fac$virginica <- factor(ifelse(irisi$virginica,"yes","no"))

rf.mod <- randomForest(virginica™., data=iris.fac, ntree=100)

plotmo(rf.mod, type="prob", nresponse="yes")

13

8.1 Multinomial models

For multinomial models we must plot the probabilities for each class one at a time.
(Plotmo doesn’t allow us to plot probability curves for more than one class on the
same plot.) Typically we select the class of interest by using nresponse to select the
appropriate column in the matrix returned by predict, but exactly how that works
depends on the predict method for the model in question.

14

9 Partial-dependence plots (the pmethod argument)

By default plotmo fixes the background variables in each plot at their medians (or most
common level for factors). In contrast, in partial-dependence plots the effect of the
background variables is averaged. We tell plotmo to generate partial-dependence plots
by setting plotmo’s pmethod argument to "partdep". Further discussion of partial-
dependence plots can be found in Section 4 “Alternatives to plotmo”.

9.1 An example

This section demonstrates partial-dependence plots using artificial data with two vari-
ables x1 and x2 and a response y. The data is plotted on the left of Figure 5. There
are large interactions between the variables.

The code to generate the data is:

f <- function(xl, x2) {
ifelse(x2 > .7, x1, # big x2
ifelse(x2 > .4, 1 - x1, # medium x2
.5 * sin(pi * x1))) # small x2
}
n <- 5000; x1 <- runif(n); x2 <- runif(n) # uniformly distributed
data <- data.frame(x1l=x1, x2=x2, y=f(x1, x2))

From this data we generate a random forest model (although any model could be used).
We also generate a default plotmo plot and a partial-dependence plot:

library(randomForest)

mod <- randomForest(y~., data=data)
plotmo (mod) # middle figure, default plotmo plot
plotmo (mod, pmethod="partdep") # right figure, partial-dependence plot

function surface . effect .°f x1 . gffect of x
x2 fixed at its median partial dependence
Q. 4
0_ ©_|
> o > o _//,/”—_-"“~\\\\
Q| e
o o
T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0
x1 x1
Figure 5:
Left A function surface showing strong interaction between z1 and z2.

Middle A classical plotmo plot showing the predicted response varying as 1 changes,
with z2 fized at its median 0.5.
Right In a partial-dependence plot the effect of 2 is averaged.

15

For simplicity we show results only for the x1 variable (though the above code generates
plots for the other variable too).

The middle figure is the default plotmo plot for x1. It shows the downward slope in the
left figure when x2 is at its median 0.5. In contrast, in the partial-dependence plot in
the right figure the effects of downward and upward slopes cancel, leaving just the effect
of the hump at low values of x2. (The small kinks at the extremes of the plotted curves
are artifacts of the way the random forest handles the borders of the distribution.)

9.2 Approximate partial-dependence plots

Calculating partial dependencies can be slow. At each point in the plot we have to make
n predictions (where n is the number of cases in the training data), and then average
these predictions. For certain models there are techniques to calculate the plots quickly,
but plotmo currently doesn’t avail itself of these techniques. To increase speed, plotmo
reduces the number of repeated internal calls to predict by accumulating data for each
call. This may require quite a lot of temporary memory.

Plotmo can also plot approximate partial-dependence plots? (pmethod="apartdep").
These are like partial-dependence plots but the background variables are averaged over
a subset of cases, rather than all cases in the training data. Approximate plots are much
faster for large datasets. The plots are usually similar to standard partial-dependence
plots, but guarantees can’t be made.

How do we choose the subset of cases? We must select cases that are representative
of the distribution of the data—for example if the data is concentrated in a banana
shape in multi-dimensional space, we should select points along the banana. In general
estimating which cases are representative is a very difficult problem, so plotmo makes
a compromise estimate: the subset is created by selecting 50 rows at equally spaced
intervals in the training matrix, after sorting the rows of the matrix on the response
values. The idea here is that the density of the response values gives some indication of
the density of the data locations. For responses with a small number of discrete values
(classification models) this sorting approach doesn’t really work.

Some details: Ties in the response value are randomly broken (so the subset isn’t
dependent on the original order of rows in the training matrix). The number 50 can
be changed using the ngridl argument. If ngrid1 is greater than the number of cases
then all cases are used, and "apartdep" is identical to "partdep".

9.3 Transforming the response for partial dependencies

When doing the averaging for partial-dependencies, plotmo directly averages the pre-
dicted responses. The vertical axis of the plots is thus on the same scale as the values
returned by predict.

2Bear in mind that we in fact are already making an approximation for all empirical partial-
distribution plots, because we approximate the distribution of the background variables by using the
training sample.

16

This point is raised because for classification models some partial-dependence func-
tions transform the predicted probabilities before taking their average (for example
plotPartial in the randomForest package). The transform is described by Equa-
tion 10.48 in Hastie et al. [8].

There seems to be no compelling reason to implement the transformation, especially for
two-class (binomial) models—for most models we can use predict type="1ink" to get
the same result, and in any case plotted probabilities are usually easier to work with
than link functions.

Finally, it should be mentioned that different implementations of partial-dependence
plots give slightly different curves. For example, we have to set ngrid1=100 for plotmo’s
partial-dependence curves to exactly match gbm package plots.

17

10 Prediction intervals (the level argument)

Use plotmo’s 1level argument to plot pointwise confidence or prediction intervals. The
predict method of the model object must support this. Examples (Figure 6):

par (mfrow=c(2,3))
log.trees <- log(trees) # make the resids more homoscedastic
(necessary for 1m)

1m
lm.model <- 1m(Volume~Height, data=log.trees)
plot(lm.model, which=1) # residual vs fitted graph, check homoscedasticity
plotmo(lm.model, level=.90, pt.col=1,
main="1m\n(conf and pred intervals)", do.par=F)

earth
library(earth)
earth.model <- earth(Volume~“Height, data=log.trees,
nfold=5, ncross=30, varmod.method="1m")
plotmo(earth.model, level=.90, pt.col=1, main="earth", do.par=F)

quantreg
library(quantreg)
rq.model <- rq(Volume~Height, data=log.trees, tau=c(.05, .5, .95))
plotmo(rqg.model, level=.90, pt.col=1, main="rq", do.par=F)

quantregForest
quantregForest is a layer on randomForest that allows prediction intervals
library(quantregForest)
x <- data.frame(Height=log.trees$Height)
qgrf.model <- quantregForest(x, log.trees$Volume)
plotmo(qrf.model, level=.90, pt.col=1, main="qrf", do.par=F)

gam
library (mgcv)
gam.model <- gam(Volume~s(Height), data=log.trees)
plotmo(gam.model, level=.90, pt.col=1,
main="gam\n(conf not pred intervals)", do.par=F)

The packages used in the above code are [10,12,18,25].

Confidence intervals versus prediction intervals
Be aware of the distinction between the two types of interval:

(i) intervals for the prediction of the mean response (often called confidence intervals)
(ii) intervals for the prediction of a future value (often called prediction intervals).

The model’s predict method determines which of these intervals get returned and
plotted by plotmo. Currently only 1m supports both types of interval on new data (see

18

predict.lm’s interval argument), and both are plotted by plotmo.

A reference is Section 3.5 of Julian Faraway’s online linear regression book [1]. See also
the vignette Variance models in earth [16], which comes with the earth package.

Assumptions for prediction intervals

Just because the intervals are displayed doesn’t mean that they can be trusted. Be
aware of the assumptions made to estimate the limits. At the very least, the model
needs to fit the data adequately. Most models will impose further conditions. For
example, linear model residuals must be homoscedastic.

Examination of the " Residual versus Fitted” plot is the standard way of detecting issues.
So for example, with linear models use plot.1lm(mod, which=1) and with earth models
use plot (mod, which=3). More generally, for any model use plotres(mod, which=3),
making use of the plotres function in the plotmo package.

Look at the distribution of residual points to detect non-homoscedasity. Also look at
the smooth line (the lowess line) in the residuals plot to detect non-linearity. If this
is highly curved, we can’t trust the intervals. One good place for more background on
residual analysis is the Regression Diagnostics: Residuals section in Weisberg [24].

These are pointwise limits. They should only be interpreted in a pointwise fashion.
So for non-parametric models they shouldn’t be used to infer bumps or dips that are
dependent on a range of the curve. For that we need simultaneous confidence bands,
which none of the above models support.

Im
Im . earth
Residuals vs Fitted (conf and pred intervals)
0 o_| 3_
ST . ~
2 —
] i
23 o =
(] « g% o ©®
o [Te] * _ -
?'— o
2 oy
T T T T T T I T I T T T T I T I T T
25 3.0 35 4.0 4.15 4.25 4.35 4.45 415 4.25 4.35 4.45
Fitted
am
r rf 9 .
q q (conf not pred intervals)
2 o o]
~ ~ ~
7 0 0
° o] o]
7 o o
] [e2] (o2}
0 _| 0 _|
g_ [[

Figure 6: Prediction intervals with plotmo. These plots were produced by the code on
the previous page.

19

http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf
http://www.milbo.org/doc/earth-varmod.pdf

11 FAQ

I’m not seeing any interaction plots

Use all2=TRUE to force the display of interaction plots. By default, degree2 plots are
drawn only for some types of model (Section 6). When al12=TRUE is used, the degreel
and degree2 arguments can be useful to limit the number of plots.

Plotmo always prints messages. How do I make it silent?

Use trace = -1. The grid message printed by default is a reminder that plotmo is
displaying just a slice of the data.

On what scale are the vertical axes of the plotmo plots?

Plotmo calls predict internally to generate the plots. So the vertical axis will be plotted
in whatever units predict returns for your model. Plotmo sets the same vertical axis
ylim for all plots on the page.

For more details, see Section 5.4 “The ylim and clip arguments” and Section 5.2 “The
type and nresponse arguments”.

For further discussion, see the following CrossValidated web page:
Interpreting partial dependence plots (marginal effects) using plotmo.

How do I get more detail on the axes of degree2 plots?

Get more information on the axes by invoking persp with ticktype="detailed".

To do this, pass persp.ticktype="detailed" to plotmo. Example:
plotmo(model, persp.ticktype="detailed")

Any plotmo argument prefixed by persp. gets passed on internally to persp. In the
plotmo help page, see the type2 argument and the description of the dots argument
near the bottom of the help page.

How do I display the image plots in color (instead of black and
white)?

Pass a vector of colors to plotmo using image.col. Example:

library(earth)
earth.mod <- earth(Volume ~ ., data = trees)
plotmo(earth.mod, all2=TRUE, type2="image",
ngrid2=50, # increase resolution in image plot

image.col=terrain.colors(30)) # 30 is arbitrary

20

https://stats.stackexchange.com/questions/329133/interpreting-partial-dependence-plots-marginal-effects-using-plotmo

Any plotmo argument prefixed by image. gets passed on internally to R’s standard
image function. In the plotmo help page, see the type2 argument and the description
of the dots argument near the bottom of the help page.

The image display has blue “holes” in it. What gives?

The light blue holes are areas where the predicted response is out-of-range. Try using
clip=FALSE (Section 5.4).

I want to add lines or points to a plot created by plotmo. and
am having trouble getting my axis scaling right.

Use do.par=FALSE or do.par=2. With the default do.par=TRUE, plotmo restores the
par parameters and axis scales to their values before plotmo was called.

After plotmo reports an error, traceback() says “No traceback
available”

Try using trace = -1 when invoking plotmo. This will often (but not always) allow
traceback at the point of failure.

How do I pass arguments to predict() called internally by plotmo?

Plotmo passes any argument prefixed with predict. directly to predict, after remov-
ing the prefix.

For example plotmo(glmnet.mod, predict.s = .8) will pass s = .8 to plotmo’s in-
ternal calls to predict.glmnet.

13 7

For more information, please see the description of the argument in the help

page of plotmo.

How to cite plotmo

Stephen Milborrow. plotmo: Plot a Model’s Residuals, Response, and
Partial Dependence Plots. R Package (2018).

@Manual{plotmopackage,

title = {plotmo: Plot a Model's Residuals, Response, and Partial Dependence Plots},
author = {Stephen Milborrow},

year = {2018},

note = {R package},

url {http://CRAN.R-project.org/package=plotmo }

21

12 Common error messages

This section list some common error messages.
e Error in match.arg(type): ’arg’ should be one of ...

The message is probably issued by the predict method for the model. Set plotmo’s
type argument to a legal value for the model, as described on the help page for the
predict method for the model.

® Error: cannot get the original model predictors
® Error: model does not have a ’call’ field or an ’x’ field

These and similar messages mean that plotmo cannot get the data it needs from the
model (Section 13).

Try simplifying the way the model function is called. Try using the x,y interface instead
of the formula interface, or vice versa.

Perhaps keepxy or similar is needed in the call to the model function, so the data is
attached to the model object and available for plotmo.

A workaround is to manually add the x and y fields to the model object before calling
plotmo, like this

model$x <- xdata
model$y <- ydata

where xdata and ydata are the x and y matrices used to build the model. This
workaround often suffices for plotmo to do its job, assuming the model has a stan-
dard predict method that accepts data.frames (some predict methods accept only
matrices).

Certain types of model built with NAs in the data will cause the above error messages.

® Error: predict.lm(xgrid, type="response") returned the wrong length

e Warning: ’newdata’ had 100 rows but variable(s) found have 30 rows

e Error: variable ’x’ was fitted with type "nmatrix.2" but type "numeric" was supplied
e Error in model.frame: invalid type (list) for variable ’x[,3]’

These and similar messages usually mean that predict is misinterpreting the new data
generated by plotmo.

The underlying issue is that many predict methods, including predict.lm, seem to
reject any reasonably constructed new data if the function used to create the model
was called in an unconventional way.

The workaround is to simplify the way the model function is called. Use a formula and
a data frame, or at least explicitly name the variables rather than passing a matrix
on the right hand side of the formula. Use simple variable names (so x1 rather than
dat$x1, for example).

If the symptoms persist after changing the way the model is called, it’s possible that
the model doesn’t save the data in a form accessible by plotmo (Section 13).

22

13 Accessing the model data

This section discusses some of plotmo’s internals. Plotmo needs to access the data used
to build the model. It does that with the method functions listed below.

As an example, the job of the plotmo.x function is to return the x matrix used when
the model was built. The default function plotmo.x.default essentially® does the
following:

() it uses model$x

(ii) if that doesn’t exist, it uses the rhs of the model formula (so if the model was
built with a formula, it must have a terms field)

(iii) if it can’t access that, it uses model$call$x

(iv) if all that fails, it prints an error message.

The default method suffices for models that save the call and data with the model in
a standard way (described in detail in the Guidelines for S3 Regression Models [15]).
Specific method functions have been written to handle some other situations. For
certain models this isn’t possible—for example xgboost models save an incorrect call
and use a custom matrix class from which the data can’t be retrieved using R functions.

13.1 Method functions

The plotmo method functions are listed below. Use trace=2 to see plotmo calling these
functions.

o plotmo.x Return the model x matrix. The default method is described above.
o plotmo.y Return the model y matrix. Similar to plotmo.x.

o plotmo.predict Make predictions on new data. This is invoked for each subplot.

The default method calls the usual predict method for the model. The prediction
newdata for each subplot is the grid of values for the subplot. The newdata is a
data.frame and not a matrix to allow both numerics and factors.

Model-specific predict methods exist for some model classes, usually because a
minor tweak is needed. For example plotmo has an internal one-line function
plotmo.predict.lars—this converts newdata to a matrix before passing it to
predict.lars, because predict.lars accepts only matrices.

o plotmo.type Select a type argument suitable for the current model’s predict
method.

o plotmo.prolog Called at the start of plotmo to do any model-specific initializa-
tion.

3There are actually a few more nuances. For example, it also tries the model field saved with some
1m models.

23

http://www.milbo.org/doc/modguide.pdf

@)

plotmo.singles Figure out which variables should appear in degreel plots.

o

plotmo.pairs Figure out which variables should appear in degree2 plots.

O

plotmo.convert.na.nresponse Convert the default nresponse argument to a
column number for multiple response models.

O

plotmo.pint Get the prediction intervals when plotmo’s level argument is used.

13.2 Environment for the model data

One x isn’t necessarily the same as another x. Plotmo must access the data used to
build the model in the correct environment:

o It uses the .Environment attribute of model$terms. (The terms field is standard
for models built with a formula.)

o If that isn’t available it uses model$.Environment. (Most models don’t have such
a field.)

o If that isn’t available it uses parent.frame(). This last resort is correct if the
model was built in the user’s workspace and plotmo is called from the same
workspace. But all bets are off if the model was created within a function and
plotmo is called from a different function.

Note that the environment isn’t actually necessary if the data is saved with the model,
typically in the x and y fields of the model. Some models allow us to save x and y with
a keepxy or similar argument (plotmo will use those fields if available).

24

References

1]
2]

3]

[10]

[11]

[14]

Julian Faraway. Linear Models With R. CRC, 2009. Cited on page 19.

John Fox, Sanford Weisberg, et al. car: Companion to Applied Regression, 2014.
R package, https://CRAN.R-project.org/package=car. Cited on page 6.

John Fox, Sanford Weisberg, et al. effects: Effect Displays for Linear, General-
1zed Linear, Multinomial-Logit, Proportional-Odds Logit Models and Mixed-Effects
Models, 2014. R package, https://CRAN.R-project.org/package=effects.
Cited on page 6.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization Paths for
Generalized Linear Models via Coordinate Descent. JASS, 2010. Cited on page 10.

Jerome H. Friedman. Greedy Function Approximation: A Gradient Boosting Ma-
chine. Annals of Statistics 19/1, 2001. https://statistics.stanford.edu/
research/multivariate-adaptive-regression-splines. Cited on page 6.

Stefan Fritsch and Frauke Guenther; following earlier work by Marc Suling.
neuralnet: Training of neural networks, 2012. R package, https://CRAN.R-
project.org/package=neuralnet. Cited on page 10.

Brandon Greenwell. pdp: Partial Dependence Plots, 2016. R package, https:
//CRAN.R-project.org/package=pdp. Cited on page 6.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction (2nd Edition). Springer, 2009. Down-
loadable from http://web.stanford.edu/~hastie/ElemStatLearn. Cited on
pages 6 and 17.

Trevor Hastie. gam: Generalized Additive Models, 2014. R package, https://
CRAN.R-project.org/package=gam. Cited on page 3.

Roger Koenker. quantreg: Quantile Regression, 2014. R package, https://CRAN.
R-project.org/package=quantreg. Cited on pages 10 and 18.

Andy Liaw, Mathew Weiner; Fortran original by Leo Breiman, and Adele Cutler.
randomForest: Breiman and Cutler’s random forests for regression and classifica-
tion, 2014. R package, https://CRAN.R-project.org/package=randomForest.
Cited on pages 3 and 9.

Nicolai Meinshausen. quantregForest: Quantile Regression Forests, 2014. R
package, https://CRAN.R-project.org/package=quantregForest. Cited on
pages 10 and 18.

David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel, and
Friedrich Leisch. e1071: Misc Functions of the Department of Statistics, Prob-
ability Theory Group (Formerly: E1071), TU Wien, 2015. R package, https:
//CRAN.R-project.org/package=e1071. Cited on page 10.

S. Milborrow. rpart.plot: Plot rpart models. An enhanced version of plot.rpart,
2011. R package, http://www.milbo.org/rpart-plot. Cited on page 10.

25

https://CRAN.R-project.org/package=car
https://CRAN.R-project.org/package=effects
https://statistics.stanford.edu/research/multivariate-adaptive-regression-splines
https://statistics.stanford.edu/research/multivariate-adaptive-regression-splines
https://CRAN.R-project.org/package=neuralnet
https://CRAN.R-project.org/package=neuralnet
https://CRAN.R-project.org/package=pdp
https://CRAN.R-project.org/package=pdp
http://web.stanford.edu/~hastie/ElemStatLearn
https://CRAN.R-project.org/package=gam
https://CRAN.R-project.org/package=gam
https://CRAN.R-project.org/package=quantreg
https://CRAN.R-project.org/package=quantreg
https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=quantregForest
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071
http://www.milbo.org/rpart-plot

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

S. Milborrow. Guidelines for S3 regression models, 2015. Vignette for R package
plotmo, http://www.milbo.org/doc/modguide.pdf. Cited on page 23.

S. Milborrow. Variance models in earth, 2015. Vignette for R package earth,
http://www.milbo.org/doc/earth-varmod.pdf. Cited on page 19.

S. Milborrow. plotmo: Plot a Model’s Residuals, Response, and Partial Dependence
Plots, 2018. R package, https://CRAN.R-project.org/package=plotmo. Cited
on page 2.

S. Milborrow. Derived from mda:mars by T. Hastie and R. Tibshirani. earth:
Multivariate Adaptive Regression Splines, 2011. R package, http://www.milbo.
users.sonic.net/earth. Cited on pages 9 and 18.

Hong Ooi. glmnetUtils: Utilities for 'Glmnet’, 2017. R package, https://CRAN.R-
project.org/package=glmnetUtils. Cited on page 10.

Greg Ridgeway et al. gbm: Generalized Boosted Regression Models, 2014. R pack-
age, https://CRAN.R-project.org/package=gbm. Cited on pages 3, 9, and 10.

Terry Therneau and Beth Atkinson. rpart: Recursive Partitioning and Regression
Trees, 2014. R package, https://CRAN.R-project.org/package=rpart. Cited
on pages 3, 9, and 10.

W.N. Venables and B.D. Ripley. MASS: Support Functions and Datasets for Ven-
ables and Ripley’s MASS, 2014. R package, http://wuw.stats.ox.ac.uk/pub/
MASS4. Cited on pages 9 and 10.

W.N. Venables and B.D. Ripley. nnet: Feed-forward Neural Networks and Multi-
nomial Log-Linear Models, 2014. R package, https://CRAN.R-project.org/
package=MASS. Cited on page 3.

Sanford Weisberg. Applied Linear Regression (4th Edition). Wiley, 2013. Cited
on page 19.

Simon Wood. mgcv: Mized GAM Computation Vehicle with GCV/AIC/REML
smoothness estimation, 2014. R package, https://CRAN.R-project.org/
package=mgcv. Cited on page 18.

Hao Helen Zhang and Chen-Yen Lin. cosso: Fit Regularized Nonparametric Re-
gression Models Using COSSO Penalty., 2013. R package, https://CRAN.R-
project.org/package=cosso. Cited on page 10.

26

http://www.milbo.org/doc/modguide.pdf
http://www.milbo.org/doc/earth-varmod.pdf
https://CRAN.R-project.org/package=plotmo
http://www.milbo.users.sonic.net/earth
http://www.milbo.users.sonic.net/earth
https://CRAN.R-project.org/package=glmnetUtils
https://CRAN.R-project.org/package=glmnetUtils
https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=rpart
http://www.stats.ox.ac.uk/pub/MASS4
http://www.stats.ox.ac.uk/pub/MASS4
https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=mgcv
https://CRAN.R-project.org/package=mgcv
https://CRAN.R-project.org/package=cosso
https://CRAN.R-project.org/package=cosso

