RGtk2 Overview

Michael Lawrence and Duncan Temple Lang

February 13, 2006

1 Introduction

RGtk2 provides R with access to a large collection of related libraries: GLib,
GObject, Pango, ATK, GDK, GTK, Cairo, and Libglade. GTK is of course the
primary binding, which all the other bindings are meant to support. GTK is
a toolkit for creating graphical user interfaces. It provides two basic types of
interaction.

Widgets A large collection of components that can be used to create the GUIL
These include common primitive elements such as buttons and labels,
menu items, text widgets, drawing areas, top-level windows, . . . with
which one can make more complex composite widgets such as dialogs, cal-
endars, file selection interfaces, etc. In addition to the low-level, action
widgets, there are also container widgets whose task is to houand man-
age other widgets. The different types of container widgets manage the
space they provide to their child widgets in different ways to give differ-
ent visual effects, specifically when a window /widget is resized. Container
widgets include notebooks with tabs for each separate page, scrolled win-
dows which provide horizontal and vertical scrollbars that get associated
with and control the visibility of a child widget; different packing widgets
such as a table, a box, a menu and menu bar...

Callbacks Also, Gtk provides a way to associate handlers or actions with par-
ticular events on these different components so that one can give the GUI
its behavior. In the case of R, these callbacks are given primarily as S
functions. These are called when the event occurs with arguments that
identify the details of the event, including the particular widget in which
the event happened.

When developing a GUI, typically one first creates the visible part, i.e. the
collection of different widgets. We do this by creating instances of the different
Gtk widget classes, creating the basic elements and “adding” them to the desired
container widget. Having created the elements, we then display or “show” the
top-level element, be it a top-level window or merely a container to be added to
an existing top-level container. Please see the RGtk2 documentation for more
details about available widgets.



Having created the physical display for the GUI by creating and arranging
the different widgets, we next register the different callback functions with the
particular widgets and specifically with the different events of interest. Again,
one must learn which events are associated by which type of widget, and when
and how the handler will be called. One can use the RGtk2 documentation for
this purpose. In general, each callback function will be invoked with at least one
argument: the object in which the event occurred. Callbacks for different events
may provide additional arguments which provide more information about the
particulars of the event. For example, when a button is released in a widget,
the button-release event passes the widget and also a GdkEventButton instance
which gives information about which button was released, etc.

In addition to the arguments provided by Gtk, one can also associate an S
object with a widget and event and have this passed to the callback function as
an argument. By associating different objects with different widgets, one can
use the same callback function. That function can implement different behavior
based on the additional argument, and using R’s lexical scoping one can even
modify the S object passed as an additional argument.

In the next few sections, we will describe how we can implement the very ba-
sic and often-used Hello World to illustrate the essential concepts in the RGtk2
package. This is a very simple GUI which presents a button in its own window.
When the user clicks the button, we print a message on the console.

2 Creating GTK Objects

As we saw above, one starts creating a GUI by instantiating different GTK
objects. A GTK object is derived from the generic GObject. The GObject API
is mostly hidden from the RGtk user, except for those functions involved in
registering callbacks against object “signals” (user events in the case of GTK
objects) and getting/setting object properties (less frequently used).

In the case of the “Hello world” application, we need to create i) the top-level
window, and ii) the button which the user clicks. We create the window using
the gtkWindow() function

win <- gtkWindow(show = FALSE)

This creates an instance of the Gtk Window class. Generally, the S language con-
structor function for a Gtk class named Gtk<Class> is given by gtk<Class>(),
i.e. replace the capital G starting the word with a lower case “g”.

Note that the constructor functions for each class that extends GtkWidget
have an optional show argument. This controls whether the widget is made
ready for showing immediately or if this must be done by the programmer at
a later time. The advantage of deferring this is usually a marginal gain in
efficiency. Hence, the default is TRUE. One need only prohibit the top-level
container, e.g. the window in this example, from being shown and then none of

the sub-widgets will be displayed.



We can invoke methods on the Gtk objects to query or modify their state.
For example, we can set thetitle for the frame of the window using the underlying
C-level routine gtk window _set_title() provided by the Gtk libraries. We do
this in S via the command

gtkWindowSetTitle (win, "Hello world test')

There are several things to note here. Firstly, we use a different naming conven-
tion than Gtk’s C-level APL Specifically, we eliminate the underscores (_) and
capitalize all but the first word (i.e. the next letter after the ). Secondly, we
pass the Gtk object on which we are operating as the first argument. Thirdly,
the type of the second argument is defined by the underlying C routine and is
a string. This corresponds to a character vector of length 1 in S.

The case of gtkWindowSetTitle() is quite simple. We started with an object
of class GtkWindow in R (created using the S constructor) and then invoked
the function gtkWindowSetTitle() for that same class. But what about, for
example, the general functions to show or hide a widget, get its parent widget,
etc. These apply to all Gtk Widget objects, and not just the Gtk Window objects.
Accordingly, the S interface uses the names that correspond to the C-level API
and are prefixed by gtkWidget...(), rather than gtkWindow...(). This makes it
hard to remember the precise name of the function one wants to call since it
depends on the inheritance or class hierarchy of the Gtk classes.

To make things simpler, we allow one to use a more Java/C++ style that
allows users to invoke methods on an object and leave the S engine to determine
the precise name to use. Specifically, we use the § operator on the object followed
by the name of the method to identify the function. Specifically, one can invoke
from S a method on an underlying Gtk object, say g using the form

g$MethodName (argl, arg2)

This eliminates the need to remember for which class the method is defined and
hence the prefix. Also this form of invocations inserts the target object, g, as
the first argument in the call to the real S function being called and so reduces
typing.

An example will make things clear. Consider again setting the title of the
window. Rather than using gtk WindowSetTitle(), we can use the command

win$SetTitle("Hello world test")

This looks for the appropriate function given the class and parent classes of
winand then invokes the “nearest” function. This corresponds to the command

gtkWindowSetTitle(win, "Hello world test")

above, but is easier for the user and is also more robust to changes in the class
hierarchy and C-leve API.



There is a marginal penalty in computational performance, but this may
disappear in the future and is also not likely to be a serious issue a) when creating
the GUT and b) given the overhead in setting up callbacks to S functions.

We can now continue with our "Hello world” example. We have created the
window and set its title and hence seen how to create Gtk objects and invoke
methods. And so creating the button becomes quite simple. We choose the
appropriate Gtk class - GtkButton - and find the appropriate constructor.

There are two constructors in the C-level API for this class: one that takes no
arguments and another that takes a string to display as the text in the button.
In S, these two constructors map to a single constructor function, whose name
is the name of the class suitably (de-)capitalized, gtkButton(). If one calls it
with no arguments, the first C-level constructor is called. Alternatively, if one
gives a character vector of length 1 as the first argument, the second version is
called. More generally, the R interface to Gtk attempts to map the constructor
routines into a single S function that can determine which C routine to call
based on the number and/or type of the arguments. For the most part, this is
quite simple and works effectively.

In our example, we specify text for the button’s display and so call

btn <- gtkButton("Say ’Hello World’")

Next we put the button into the top-level window. The latter is a GtkContainer
object and has a default mechanism for placing children widgets. Since this is
the only widget we will display in the window, we don’t have to worry about
how to aportion space between different widgets, etc. All we need do is invoke
the add() method on the window, giving it the child widget which is the button.

win$add (b)

When we create the button, we did not provide a value for the show argument
and so the button is potentially visible. To actually see it, however, we need to
show the top-level widget, i.e. the window. We do this by explicitly calling its
show() method.

win$Show ()

3 Callbacks

At this point, we have created a Gtk GUI that one can see on the screen and
can even interact with by clicking on the button. The next step is to make it do
something when we click on the button, and this is where we look at callbacks.

The usual types of events are user interactions such as clicking on a button,
dragging the thumb of a slider, moving the mouse over a drawing area, etc.
Other types of events might be less visible and more abstract such as text being
pushed or popped onto a status bar, a new data set being created, and so on.
Basically, each type of event is associated with a Gtk object in which it “occurs”.



A Gtk object can support different types of events, and events in different
objects are treated independently. One creates and customizes an application
by connecting different pieces of code that are executed when particular Gtk
objects raise/emits particular events.

In our example, we want to execute a simple piece of S code that is executed
when the user clicks on the button. The code simply writes the string "Saying
hello from the button" to the console via the cat() function. To arrange this, we
can look at the different signals that the button supports. (Of course, we chose
the GtkButton class because it provided the appropriate signal, so this seems
like we are going around in circles. In general, knowing the widget to use and
appropriate signal is the trick to using any toolkit.)

Using the help pages for RGtk, we can find out that the button supports
6 diffferent types of signals itself, and inherits many others from its ancestor
classes ( GtkBin, GtkContainer,

GtkWidget, GtkObject, and GObject). These signal names are activate,
pressed, released, clicked, enter and leave. The one we are interested in is clicked.
We specify our callback for the particular button using the method ¢SignalCon-
nect(). We specify the name of the signal (i.e. clicked) and an invokable S
object which will be called when the signal occurs:

gSignalConnect(btn, "clicked", quote(cat("Saying hello from the button\n")))

Now, when you click on the button, the string will be printed on the console.
The code that is to be called when the event occurs can be an S expression
or call, or a function. If it is an expression or call, then it is evaluated when
the event occurs. One typically creates such callable objects using quote(),
expression() or substitute(). Each of these types of callbacks is evaluated as a
toplevel expression and one is presumably interested in its global side effects,
such as changing the value of a session-wide variable, writing to a file or the
console, or updating one or more graphics devices.

If the callback is a function, then it is invoked slightly differently. There
is more information available to the callback, specifically, the arguments that
are made available at the C level by the Gtk API. These are passed onto the
S function. This collection of arguments always includes the Gtk object for
which the signal is being emitted. Many signals also provide additional values
that parameterize the event and allow the callback to be written generally but
parameterized by the widget or other event-specific values. These values are
converted to S objects using the basic conversion mechanism. In addition to the
event-specific values passed from Gtk, one can also specify S objects that Gtk
remembers and passes to the function when it is called. Again, this allows one
to parameterize general S functions to act on the specifics of the event.

Note that we added the callback after the button was created and visible.
This is not necessary and we can add it before the top-level window is shown.
However, it does illustrate that we can dynamically add callbacks at any time.
Indeed, we can add multiple callbacks to the same Gtk object, and even for the
same signal. For example, let’s add a second that prints “And again”.



id <- gSignalConnect(btn, "clicked", quote(cat("And again\n'")))

Go ahead and click on the button now and see that two lines of output are
produced.

And, of course, if we can dynamically add callbacks, we must also be able to
remove them at any time. To do this, we use the gSignalHandlerDisconnect()
method for the GObject. We give it the identifier for the registered callback
that we received from g¢SignalConnect. So to un-register the second callback,
we issue the S command

gSignalHandlerDisconnect (btn, id)

Again, click on the button and you should get only one line of output, specifically
saying “hello” from the button.

4 Intermediate Concepts

4.1 Enumerations and Flags

Enumerated types and flags are symbolic constants that are used to identify
different states or combinations of states. In R, we represent these as named
integers. The intent is that the user will provide the name (or names for flags)
and not a simple integer value. So, for example, when specifying the type of
window in a call to gtkWindowNew() we can use any of the names from the
Gtk WindowType vector representing the

enumeration:

> GtkWindowType
toplevel dialog popup
0 1 2

Since this is an enumeration, we specify just one of these values, as in
> gtkWindowNew("toplevel")

When a flag value is expected, we can combine different values together. Since
we can OR (|) names together, we need an alternative syntax. For this, we use
a simple character vector containing the names of the flag elements.

As an example, consider the display options for controlling the appearance of
the calendar widget. The GtkCalendarDisplayOptions is a named integer vector
giving the different names for the flag values. If we want to have weeks start on
a monday and also show week numbers, we can do this as

> gtkCalendarDisplayOptions(cal, c('"week-start-monday","show-week-numbers"))

To activate all options, we can use



gtkCalendarDisplayOptions(cal, names(GtkCalendarDisplayOptions))
The calendar can be create and display using the following code

cal <- gtkCalendar()

gtkCalendarDisplayOptions(cal, c("week-start-monday","show-week-numbers"))
w <- gtkWindow()

w$Add (cal)

Using names guarantees the validity of the value as it is resolved and checked
at run time. However, to guard against erroneous values, we have C-level code
that checks an integer value is within the appropriate set of C-level values and
returns an object representing that symbolic value.

One can note the fact that the name toplevel is converted to GTK  WINDOW _TOPLEVEL
in the value returned by the enumeraton. This is the C-level name for the enu-
meration. It can be used as a synonym for the value. In other words, toplevel
and GTK WINDOW _TOPLEVEL are the same. And indeed, for every enu-
meration or flag we have both a sets of element names available. The local
version is available as described above by giving the name of type, e.g. GtkWin-
dowType and GtkCalendarDisplayOptions. Prefixing the name with a . gives
the alternative version with the longer, internal names. Use whichever form you
desire. Those who write Gtk code in other languages may be familiar with the
internal names. The local names are shorter.

4.2 Accessing Object Properties

Each GObject instance supports values that are accessible by name. The col-
lection of properties can be accessed via the names() function and this makes
the object look like a list of named values. Properties are inherited through the
type hierarchy.

Each property has a specific type that can be assigned to it. Some of these
values are are writeable, while most are readable. Additionally, the collection
for a given instance is made up of combining the properties from the different
classes from which the instance is derived. One can discover all this information
using the function gObjectGetPropInfo().

b <- gtkButton("Some text")

names (b)

b["label"]

b["label"] <- "A Replacement string"
gObjectGetPropInfo(b)

Any function in RGtk2 that requests property value pairs should be passed
property values as arguments with the property names as the argument names.



4.3 Timers & Idle Tasks

The RGtk2 binding to the GLib library allows one to interact with the core event
loop (GMainLoop) that drives GTK. gTimeoutAdd() provides a convenient way
to register S functions to be called after a specified interval of time. If the
function returns 7, the task is rescheduled to run after the same interval. Alter-
natively, returning F' discards the timer. One can programmatically remove the
timer using gSourceRemove(), passing the value returned from gTimeoutAdd().

By default, the function is called with no arguments. However, one can
arrange to have it passed a value by specifying the object as the data argu-
ment in the call to gTimeoutAdd(). This is similar to the data argument for
gSignalConnect().

Idle tasks are run when there are no other events to process in the GLib
event queue. These can be used to perform non-urgent background tasks. The
interface is very similar to timeout functions. One registers an idle task with
gldleAdd() and this returns an identifier for the tasks. One can remove the task
using gSourceRemove() (the same as with timers).

4.4 Field Accessors

Certain structures in the libraries bound by RGtk2 expose public fields. Gen-
erally, these fields are read-only. In fact, it is not possible to directly set a field
with RGtk2 (this functionality, when allowed, is very rarely required). In order
to access a field of a structure in RGtk2, use the following syntax:

obj[[*“fieldName’’]]

4.5 Transparent Types

Conversion of primitive types between R and the libraries is fairly simple. A
more complicated problem that RGtk2 attempts to solve is the conversion of
simple, transparent C structures that are normally initialized manually and
therefore lack a constructor. This problem could be solved in at least two ways.
First, a function could be added that serves as a constructor for the structure.
Unfortunately, this would break the strict adherence to the API, since a new
function is introduced. Also, this solution violates the “spirit” of the API’s
design. The simple structures are meant to be initialized and manipulated
without the extra baggage of function calls. Given these disadvantages, the
alternative is favored: allowing the user to define an instance of such a type
as an R list which is automatically converted to the corresponding C structure
when passed to a wrapped function. When an instance of such a type is returned
from a function, it is converted to its R list equivalent, preserving symmetry.
For example, suppose a user wished to construct an instance of GdkColor,
a structure describing an RGB color with fields red, green, and blue. The
following code would yield the color red: ¢(65535, 0, 0). Here the fields for red,
green, blue must be specified in the same order as they occur in the C structure
definition. If the user desires an alternative order or does not wish to specify



all of the fields (they default to zero), then the list should be named according
to the field names in the C structure. For example, red could be specified as
c(red=65535).

4.6 Special Constants

Special constants like the GDK keycodes and GTK stock id’s are available in
RGtk2. For the GDK keycodes, the C GDK_ESCAPE becomes .gdkFEscape in
R. For the stock id’s, there is no difference between R and C, so GTK _CLOSE
is GTK_CLOSE. The inconsistency is due to my uncertainty as to which form
is better.

5 Advanced Concepts

To be documented.

5.1 RGtkDataFrame
5.2 Accelerated GtkListStore and GtkTreeStore loading
5.3 RGClosure

6 The Other Libraries

Most of the libraries besides GTK and the low-level GLib and GObject are
concentrated on drawing. GDK provides basic drawing routines and access to
low-level hardware devices. Cairo is a vector graphics library. Pango provides
anti-aliased and internationalized fonts. GdkPixbuf is a specialized library for
image manipulation. Of the other three libraries, Libglade is probably the most
interesting. It allows the automatic construction of GTK GUI’s from XML
descriptions produced by the Glade tool. The least interesting and likely least
useful library is ATK, which adds accessibility device support to GTK.



