
Summary of recent updates to spatstat

Adrian Baddeley, Rolf Turner and Ege Rubak

For spatstat version 1.37-0

This is a summary of changes that have been made to the spatstat package since 2010, when the
last set of workshop notes [1] was published. Those notes covered spatstat version 1.21-2.

The current version of spatstat is 1.37-0. Spatstat has almost tripled in size since 2010, and
now contains over 100,000 lines of code.

2002 2004 2006 2008 2010 2012 2014

0
20

40
60

80
10

0

Spatstat growth

Li
ne

s
of

 c
od

e
(x

 1
00

0)

C code

R code

Contents

1 Overview 2

2 New classes 4

3 New datasets 5

4 New Functions 6

5 Precis of all changes 15

6 Alphabetical list of changes 19

7 Serious Bugs Fixed 31

1

1 Overview

Following is an overview of the most important changes.

❼ spatstat and all its dependencies are now Free Open Source.

❼ polygon clipping is now performed by the Free Open Source library polyclip. The library
gpclib is no longer used.

❼ spatstat now ‘Imports’ (rather than ‘Depends’ on) the libraries mgcv, deldir, abind, tensor,
polyclip. This means that these libraries are not accessible to the user unless the user explicitly
loads them by typing library(mgcv) and so on.

❼ polygon calculations are now enabled, always.

❼ geometrical errors in polygon data are now repaired automatically.

❼ Improvements to Gibbs models (ppm):

– now accepts syntax ppm(X ~ Z) similar to lm and glm, as well as old syntax ppm(X, ~Z)

– Covariates no longer have to be passed in the argument covariates but can be objects in
the R session;

– new ’logistic likelihood’ method;

– variance-covariance matrix;

– print method shows standard errors and CI for coefficients;

– new interactions (Triplets, Concom);

– hybrids of interactions;

– self-starting feature of interactions;

– better control over dummy points;

– improved quadrature schemes (removing a source of bias);

– spatial covariate functions can depend on additional parameters;

– extract interaction from a fitted model;

– check whether model is valid;

– project to a valid model;

– calculate intensity of fitted model;

– calculate K-function and pair correlation function of fitted model;

– confidence intervals using confint;

– improvements/extensions to rmh;

– exact simulation for many models;

– predict conditional intensity for another point pattern

– compute confidence intervals and prediction intervals for intensity, and for total number of
points in a region.

– covariates can be tessellations.

❼ Diagnostics for Gibbs models: Leverage, influence, partial residuals, score residuals, residual
summary functions (Kcom, Kres, Gcom, Gres, psst, psstA, psstG, compareFit)

2

❼ Improvements to cluster/Cox models (kppm):

– now accepts syntax kppm(X ~ Z) similar to lm and glm, as well as old syntax kppm(X, ~Z)

– Covariates no longer have to be passed in the argument covariates but can be objects in
the R session;

– Guan’s second order composite likelihood;

– new cluster types "Cauchy", "VarGamma";

– log-Gaussian Cox processes;

– fitted intensity;

– variance-covariance of trend parameters;

– generic support e.g. coef, model.matrix;

– conversion e.g. as.fv

– extract K function (Kmodel, pcfmodel);

– more control over trend (more arguments passed to ppm);

– confidence intervals using confint

– covariates can be tessellations.

❼ Support for point patterns on a linear network, including geometrically-corrected linear K func-
tion, pair correlation function, point process models, envelopes, tests.

❼ Support for replicated point patterns: An object of class mppm represents a point process model
fitted to several point patterns. The patterns may be treated as independent replicate obser-
vations of the same model, or as the responses from different units in a designed experiment.
Methods for this class include plot, print, summary, fitted, predict, simulate, ...

❼ Nonparametric/summary statistics e.g.

– rhohat (nonparametric estimate of intensity as function of covariate)

– idw (inverse distance weighted smoothing)

– convolve.im (image convolution)

– k-th nearest neighbours (nndist, nncross, nnwhich)

– more methods for intensity.

❼ Statistical tools e.g.

– several algorithms for bandwidth selection (bw.*)

– bootstrap confidence intervals for summary functions (lohboot)

– pooling operations (pool.*)

❼ Changes to ppx format: An object of class ppx may now include ’local’ coordinates as well as
’spatial’ and ’temporal’ coordinates, and marks.

❼ Improvements to plots :

– colour map objects

– graphics symbol map objects

– texture map objects

3

– automatic legend in plot.ppp

– collision avoidance in plot.fv

– plot.im(log=TRUE)

– plot.listof(equal.ribbon=TRUE)

– improved labels in plot.fv

– Switch all plots from colour to greyscale by setting spatstat.options(monochrome=TRUE)

❼ simulation:

– rmh interface restructured

– rmh can save transition history

– visual debugger for rmh

– exact simulation for many models

– quasirandom point patterns and sequences

❼ envelopes: Extended functionality; Envelopes can be pooled and transformed.

❼ Many, many, many bug fixes.

❼ Substantially increased performance.

❼ data in spatstat are now lazy-loaded, so you don’t have to type data(amacrine), etc.

❼ user interrupt: Long calculations in spatstat now respond to the Interrupt/Stop signal.

❼ vignettes: New vignettes ’Getting Started with the Spatstat Package’, ’Analysing Replicated
Point Patterns in Spatstat’ and ‘Summary of Recent Changes to Spatstat’

❼ demonstrations: New demonstration demo(sumfun) shows the nonparametric summary functions
in spatstat.

2 New classes

Important new classes of objects are listed here.

❼ linnet: An object of class ’linnet’ represents a linear network, i.e. a connected network of line
segments, such as a road network. Methods for this class include plot, print, summary etc.

❼ lpp: An object of class ’lpp’ represents a point pattern on a linear network, such as a record
of the locations of road accidents on a road network. Methods for this class include plot, print,
summary etc.

❼ lppm: An object of class ’lppm’ represents a point process model fitted to a point pattern on a
linear network. Methods for this class include plot, print, summary, fitted, predict, simulate, ...

❼ linim: Pixel image on a linear network.

❼ linfun Function defined on a linear network (e.g. a distance function)

4

❼ mppm: An object of class ’mppm’ represents a point process model fitted to several point pattern
datasets. The patterns may be treated as independent replicate observations of the same model,
or as the responses from different units in a designed experiment. Methods for this class include
plot, print, summary, fitted, predict, simulate, ...

❼ rhohat: Nonparametric estimate of intensity as function of covariate (result of ’rhohat’). Can
be used as an R function. Methods include predict

❼ layered : A simple mechanism for controlling plots that consist of several successive layers of
data.

❼ timed: A simple mechanism for recording the computation time taken.

❼ rat: ’Ratio objects’ (suitable for pooling)

❼ objsurf: An object of class ’objsurf’ contains values of the likelihood or objective function in
a neighbourhood of the maximum.

❼ simplepanel: An object of class ’simplepanel’ represents a spatial arrangement of buttons that
respond to mouse clicks, supporting a simple, robust graphical interface.

❼ symbolmap: An object of class ’symbolmap’ represents a mapping from data values to graphical
symbols. This makes it easy to ensure that the same graphics map is used in two different plots.
The graphics map can also be plotted in its own right as a legend to the plots.

❼ texturemap: An object of class ’texturemap’ represents a mapping from data values to graphical
textures.

3 New datasets

The following datasets have been added to the package.

❼ pyramidal: Diggle-Lange-Benes data on pyramidal neurons in cingulate cortex. 31 point pat-
terns divided into 3 groups.

❼ waterstriders: Nummelin-Penttinen waterstriders data. Three independent replicates of a
point pattern formed by insects.

❼ simba: Simulated data

❼ demohyper: Simulated data example for mppm. Point patterns and pixel image covariates, in two
groups with different regression coefficients.

❼ clmfires: Forest fires in Castilla-La Mancha

❼ gordon: People sitting on the grass in Gordon Square, London

❼ hyytiala: Mixed forest in Hyytiala, Finland (marked by species)

❼ paracou: Kimboto trees in Paracou, French Guiana (marked as adult/juvenile)

❼ waka: Trees in Waka national park (marked with diameters)

❼ mucosa: Cells in gastric mucosa

5

❼ gorillas: Gorilla nest sites in a National Park in Cameroon.

❼ chicago: Street crimes in the University district of Chicago. A point pattern on a linear network.

❼ flu: Spatial point patterns giving the locations of influenza virus proteins on cell membranes.
Kindly released by Dr George Leser and Dr Robert Lamb.

❼ simplenet: Simple example of a linear network

4 New Functions

Following is a list of all the functions that have been added.

❼ split.hyperframe: method for split for hyperframes.

❼ complementarycolour: Compute the complementary colour value of a given colour value, or
the complementary colour map of a given colour map.

❼ dmixpois, pmixpois, qmixpois, rmixpois: (log-)normal mixture of Poisson distributions.

❼ gauss.hermite: Gauss-Hermite quadrature approximation to the expectation of any function
of a normally-distributed random variable.

❼ minnndist, maxnndist: faster ways to compute min(nndist(X)) and max(nndist(X))

❼ boundingbox: Generic function, replaces bounding.box.

❼ Smoothfun: create a function(x,y) equivalent to the result of Smooth.ppp

❼ vdCorput, Halton, Hammersley, rQuasi: quasirandom point patterns and sequences.

❼ ellipse: create an elliptical window.

❼ clickbox: interactively specify a rectangle by point-and-click on a graphics device.

❼ symbolmap: Create a graphics symbol map (a mapping from data values to graphical symbols)

❼ update.symbolmap: Modify a graphics symbol map

❼ invoke.symbolmap: Apply graphics symbol map to data values, and plot the symbols

❼ plot.symbolmap: Plot the graphics symbol map in the style of a legend

❼ add.texture: Draw a simple texture inside a specified region.

❼ textureplot: Display a factor-valued pixel image using texture fill.

❼ texturemap: Create a graphics texture map (a mapping from data values to graphical textures)

❼ plot.texturemap: Plot the graphics texture map in the style of a legend

❼ reload.or.compute: Utility for use in R scripts. Either reload results from file, or compute
them.

❼ im.apply: Apply a function to corresponding pixel values in several images.

❼ hexgrid, hextess: Create a hexagonal grid of points, or a tessellation of hexagonal tiles

6

❼ shift.tess, rotate.tess, reflect.tess, scalardilate.tess, affine.tess: Apply a geo-
metrical transformation to a tessellation.

❼ quantile.ewcdf: Extract quantiles from a weighted cumulative distribution function.

❼ scanLRTS: Evaluate the spatially-varying test statistic for the scan test.

❼ intensity.splitppp: Estimate intensity in each component of a split point pattern.

❼ intensity.quadratcount: Use quadrat counts to estimate intensity in each quadrat.

❼ as.owin.quadratcount, as.owin.quadrattest: Extract the spatial window in which quadrat
counts were performed.

❼ mppm: Fit a Gibbs model to several point patterns. The point pattern data may be organised as
a designed experiment and the model may depend on covariates associated with the design.

❼ anova.mppm: Analysis of Deviance for models of class mppm

❼ coef.mppm: Extract fitted coefficients from a model of class mppm

❼ fitted.mppm: Fitted intensity or conditional intensity for a model of class mppm

❼ kstest.mppm: Kolmogorov-Smirnov test of goodness-of-fit for a model of class mppm

❼ logLik.mppm: log likelihood or log pseudolikelihood for a model of class mppm

❼ plot.mppm: Plot the fitted intensity or conditional intensity of a model of class mppm

❼ predict.mppm: Compute the fitted intensity or conditional intensity of a model of class mppm

❼ quadrat.test.mppm: Quadrat counting test of goodness-of-fit for a model of class mppm

❼ residuals.mppm: Point process residuals for a model of class mppm

❼ subfits: Extract point process models for each individual point pattern dataset, from a model
of class mppm.

❼ vcov.mppm: Variance-covariance matrix for a model of class mppm

❼ integral.msr: Integral of a measure.

❼ objsurf: For a model fitted by optimising an objective function, this command computes the
objective function in a neighbourhood of the optimal value.

❼ contour.objsurf, image.objsurf, persp.objsurf, plot.objsurf: Plot an ’objsurf’ object.

❼ fvnames: Define groups of columns in a function value table, for use in plot.fv, etc

❼ multiplicity: New generic function for which multiplicity.ppp is a method.

❼ unique.ppx, duplicated.ppx, multiplicity.ppx: Methods for unique(), duplicated() and
multiplicity() for ’ppx’ objects. These also work for ’pp3’ and lpp objects.

❼ closepairs, crosspairs, closepaircounts, crosspaircounts: Low-level functions for finding
all close pairs of points

7

❼ nnfun.ppp, distfun.ppp: New argument k allows these functions to compute k-th nearest
neighbours.

❼ nndensity: Estimate point process intensity using k-th nearest neighbour distances

❼ simplepanel, run.simplepanel: Support for a simple point-and-click interface for general use.

❼ as.lpp: Convert data to a point pattern on a linear network.

❼ distfun.lpp: Distance function for point pattern on a linear network.

❼ eval.linim: Evaluate expression involving pixel images on a linear network.

❼ linearKcross, linearKdot, linearKcross.inhom, linearKdot.inhom: Multitype K functions
for point patterns on a linear network

❼ linearmarkconnect, linearmarkequal: Mark connection function and mark equality function
for multitype point patterns on a linear network

❼ linearpcfcross, linearpcfdot, linearpcfcross.inhom, linearpcfdot.inhom: Multitype pair
correlation functions for point patterns on a linear network

❼ linfun: New class of functions defined on a linear network

❼ nndist.lpp, nnwhich.lpp, nncross.lpp: Methods for nndist, nnwhich, nncross for point
patterns on a linear network

❼ nnfun.lpp: Method for nnfun for point patterns on a linear network

❼ vcov.lppm: Variance-covariance matrix for parameter estimates of a fitted point process model
on a linear network.

❼ bilinearform Computes a bilinear form

❼ tilenames, tilenames<-: Extract or change the names of tiles in a tessellation.

❼ bw.ppl: Likelihood cross-validation technique for bandwidth selection in kernel smoothing.

❼ is.lppm, is.kppm, is.slrm: Tests whether an object is of class ’lppm’, ’kppm’ or ’slrm’

❼ Smooth: New generic function for spatial smoothing.

❼ Smooth.ppp, Smooth.fv, Smooth.msr: Methods for Smooth (identical to smooth.ppp, smooth.fv,
smooth.msr respectively)

❼ fitted.kppm: Method for fitted for cluster/Cox models

❼ nncross.pp3: Method for nncross for point patterns in 3D

❼ nnmark: Mark of nearest neighbour - can be used for interpolation

❼ dclf.progress, mad.progress: Progress plots (envelope representations) for the DCLF and
MAD tests.

❼ deriv.fv: Numerical differentiation for fv objects.

❼ interp.colourmap: Smooth interpolation of colour map objects - makes it easy to build colour
maps with gradual changes in colour

8

❼ tweak.colourmap Change individual colour values in a colour map object

❼ beachcolourmap: Colour scheme appropriate for ‘altitudes’ (signed numerical values)

❼ as.fv: Convert various kinds of data to an ’fv’ object

❼ quadscheme.logi: Generates quadrature schemes for the logistic method of ppm.

❼ beginner Introduction for beginners.

❼ nnmap: Given a point pattern, finds the k-th nearest point in the pattern from each pixel in a
raster.

❼ coef.fii, coef.summary.fii: Extract the interaction coefficients of a fitted interpoint interac-
tion

❼ edges2vees: Low-level function for finding triples in a graph.

❼ affine.lpp, shift.lpp, rotate.lpp, rescale.lpp, scalardilate.lpp: Geometrical transfor-
mations for point patterns on a linear network

❼ affine.linnet, shift.linnet, rotate.linnet, rescale.linnet, scalardilate.linnet: Ge-
ometrical transformations for linear networks

❼ [.linnet Subset operator for linear networks

❼ timed: Records the computation time taken

❼ connected.ppp: Find clumps in a point pattern.

❼ kstest.lpp, kstest.lppm: The spatial Kolmogorov-Smirnov test can now be applied to point
patterns on a linear network (class lpp) and point processes on a linear network (class lppm).

❼ bermantest.lpp, bermantest.lppm: Berman’s Z1 and Z2 tests can now be applied to point
patterns on a linear network (class lpp) and point processes on a linear network (class lppm).

❼ rhohat.lpp, rhohat.lppm: Nonparametric estimation of the dependence of a point pattern on
a spatial covariate: rhohat now applies to objects of class lpp and lppm.

❼ intensity.lpp: Empirical intensity of a point pattern on a linear network.

❼ as.function.rhohat: Converts a rhohat object to a function, with extrapolation beyond the
endpoints.

❼ [.layered: Subset operator for layered objects.

❼ shift, rotate, affine, rescale, reflect, flipxy, scalardilate: These geometrical trans-
formations now work for layered objects.

❼ iplot.layered: Interactive plotting for layered objects.

❼ as.owin.layered: Method for as.owin for layered objects.

❼ [.owin: Subset operator for windows, equivalent to intersect.owin.

❼ rcellnumber: Generates random integers for the Baddeley-Silverman counterexample.

9

❼ is.lpp: Tests whether an object is a point pattern on a linear network.

❼ is.stationary.lppm, is.poisson.lppm: New methods for is.stationary and is.poisson

for class lppm

❼ sessionLibs: Print library names and version numbers (for use in Sweave scripts)

❼ round.ppp: Round the spatial coordinates of a point pattern to a specified number of decimal
places.

❼ rounding: Determine whether a dataset has been rounded.

❼ Hybrid: The hybrid of several point process interactions [Joint research with Jorge Mateu and
Andrew Bevan]

❼ is.hybrid: Recognise a hybrid interaction or hybrid point process model.

❼ Finhom, Ginhom, Jinhom Inhomogeneous versions of the F, G and J functions

❼ delaunay.distance: Graph distance in the Delaunay triangulation.

❼ distcdf: Cumulative distribution function of the distance between two independent random
points in a given window.

❼ bw.frac: Bandwidth selection based on window geometry

❼ shortside.owin, sidelengths.owin: Side lengths of (enclosing rectangle of) a window

❼ clusterset: Allard-Fraley estimator of high-density features in a point pattern

❼ pool.quadrattest: Pool several quadrat tests

❼ nnfun: Nearest-neighbour map of a point pattern or a line segment pattern

❼ as.ppm: Converts various kinds of objects to ppm.

❼ crossdist.lpp: Shortest-path distances between pairs of points in a linear network

❼ nobs.lppm: Method for nobs for lppm objects.

❼ as.linim: Converts various kinds of objects to linim.

❼ model.images.slrm: Method for model.images for slrm objects

❼ rotate.im: Rotate a pixel image

❼ parres: Partial residual plots for spatial point process models. A diagnostic for the form of a
covariate effect.

❼ addvar: Added variable plots for spatial point process models. A diagnostic for the existence of
a covariate effect.

❼ intensity, intensity.ppp, intensity.ppm Calculate the intensity of a dataset or fitted model.
Includes new approximation to the intensity of a fitted Gibbs model

❼ LambertW: Lambert’s W-function

10

❼ exactMPLEstrauss: Fits the stationary Strauss point process model using an exact maximum
pseudolikelihood technique. This is mainly intended for technical investigation of algorithms.

❼ split.ppx: Method for split for multidimensional point patterns (class ppx). This also works
for point patterns on a linear network (class lpp).

❼ model.images: This function is now generic, with methods for classes ppm, kppm, lppm

❼ model.frame, model.matrix: These generic functions now have methods for classes kppm, lppm

❼ as.owin.kppm, as.owin.lppm: New methods for ’as.owin’ for objects of class kppm, lppm

❼ as.linnet.lppm: Extracts the linear network in which a point process model was fitted.

❼ dclf.test: Perform the Diggle (1986)/ Cressie (1991)/ Loosmore and Ford (2006) test of CSR
(or another model)

❼ mad.test: Perform the Maximum Absolute Deviation test of CSR (or another model).

❼ convolve.im: Compute convolution of pixel images.

❼ Kmulti.inhom: Counterpart of Kmulti for spatially-varying intensity.

❼ rmhexpand: Specify a simulation window, or a rule for expanding the simulation window, in
Metropolis-Hastings simulation (rmh)

❼ transect.im: Extract pixel values along a line transect.

❼ affine.im: Apply an affine transformation to a pixel image.

❼ scalardilate: Perform scalar dilation of a geometrical object relative to a specified origin.

❼ reflect: Reflect a geometrical object through the origin.

❼ [.lpp, [.ppx: Subset operators for the classes lpp (point pattern on linear network) and ppx

(multidimensional space-time point pattern).

❼ is.rectangle, is.polygonal, is.mask: Determine whether a window w is a rectangle, a domain
with polygonal boundaries, or a binary pixel mask.

❼ has.offset: Determines whether a fitted model object (of any kind) has an offset.

❼ lohboot: Computes bootstrap confidence bands for pair correlation function and K function
using Loh’s (2008) mark bootstrap.

❼ rho2hat: Bivariate extension of rhohat for estimating spatial residual risk, or intensity as a
function of two covariates.

❼ rStraussHard: Perfect simulation for Strauss-hardcore process (with γ ≤ 1)

❼ simulate.slrm: Method for simulate for spatial logistic regression models.

❼ labels.ppm, labels.kppm, labels.slrm: Methods for labels for fitted point process models.

❼ commonGrid: Determine a common spatial domain and pixel resolution for several pixel images
and/or binary masks

11

❼ as.matrix.owin: Converts a window to a logical matrix.

❼ rDiggleGratton, rDGS, rHardcore: Perfect simulation for the Diggle-Gratton process, Diggle-
Gates-Stibbard process, and Hardcore process.

❼ bw.scott: Scott’s rule of thumb for bandwidth selection in multidimensional smoothing

❼ valid.ppm: Checks whether a fitted point process model is a valid point process

❼ project.ppm: Forces a fitted point process model to be a valid point process

❼ leverage.ppm, influence.ppm, dfbetas.ppm: Leverage and influence for point process models

❼ ippm: Experimental extension to ’ppm’ which fits irregular parameters in trend by Fisher scoring
algorithm.

❼ Tstat: Third order summary statistic for point patterns based on counting triangles.

❼ rCauchy, rVarGamma: simulation of a Neyman-Scott process with Cauchy clusters or Variance
Gamma (Bessel) clusters. Contributed by Abdollah Jalilian.

❼ rPoissonCluster: simulation of a general Poisson cluster process

❼ model.covariates: Identify the covariates involved in a model (lm, glm, ppm etc)

❼ as.im.distfun: Converts a ’distfun’ to a pixel image.

❼ cauchy.estK, cauchy.estpcf, vargamma.estK, vargamma.estpcf: Low-level model-fitting func-
tions for the Neyman-Scott process with Cauchy or Variance-Gamma cluster kernel. Contributed
by Abdollah Jalilian.

❼ Triplets: Geyer’s triplet interaction, for point process models

❼ coef.summary.ppm: You can now type coef(summary(fit)) to extract a table of the fitted
coefficients of the point process model fit

❼ scan.test: Spatial scan test of clustering

❼ rat: New class of ’ratio objects’

❼ pool.rat: New method for pool. Combines K function estimates for replicated point patterns
(etc) by computing ratio-of-sums

❼ unnormdensity: Weighted kernel density with weights that do not sum to 1 and may be negative.

❼ compatible: New generic function with methods for fv, im, fasp and units.

❼ imcov: Spatial covariance function of pixel image or spatial cross-covariance function of two
pixel images

❼ harmonise.im: Make several pixel images compatible by converting them to the same pixel grid

❼ contour.listof, image.listof: Methods for contour() and image() for lists of objects

❼ dummify: Convert data to numeric values by constructing dummy variables.

❼ pool: Pool data from several objects of the same class

12

❼ pool.envelope Pool simulated data from several envelope objects and create a new envelope

❼ pool.fasp: Pool simulated data from several function arrays and create a new array

❼ envelope.envelope: Recalculate an envelope from simulated data using different parameters

❼ bw.diggle: Bandwidth selection for density.ppp by mean square error cross-validation.

❼ bw.smoothppp: Bandwidth selection for smooth.ppp by least-squares cross-validation.

❼ layered, plot.layered: A simple mechanism for controlling plots that consist of several suc-
cessive layers of data.

❼ model.depends: Given a fitted model (of any kind), identify which of the covariates is involved
in each term of the model.

❼ model.is.additive: Determine whether a fitted model (of any kind) is additive, in the sense
that each term in the model involves at most one covariate.

❼ sumouter, quadform: Evaluate certain quadratic forms.

❼ flipxy: Exchange x and y coordinates.

❼ idw: Inverse-distance weighted smoothing.

❼ localKinhom, localLinhom, localpcfinhom: Inhomogeneous versions of localK, localL, lo-
calpcf:

❼ envelope.lpp: Simulation envelopes for point patterns on a linear network

❼ lineardisc: Compute the ’disc’ of radius r in a linear network

❼ linearpcf: Pair correlation for point pattern on a linear network

❼ linearKinhom, linearpcfinhom: Inhomogeneous versions of the K function and pair correlation
function for point patterns on a linear network

❼ lppm: Fit point process models on a linear network.

❼ anova.lppm: Analysis of deviance for point process models on a linear network.

❼ predict.lppm: Prediction for point process models on a linear network.

❼ envelope.lppm: Simulation envelopes for point process models on a linear network.

❼ linim: Pixel image on a linear network

❼ plot.linim: Plot a pixel image on a linear network

❼ Gcom, Gres, Kcom, Kres: New diagnostics for fitted Gibbs or Poisson point process models based
on score residuals. Gcom is the compensator of the G function; Gres is the residual of the G

function; Kcom is the compensator of the K function; Kres is the residual of the K function.

❼ psst, psstA, psstG: New diagnostics for fitted Gibbs or Poisson point process models based on
pseudoscore residuals. psst is the pseudoscore diagnostic for a general alternative; psstA is the
pseudoscore diagnostic for an Area-interaction alternative; psstG is the pseudoscore diagnostic
for a Geyer saturation alternative.

13

❼ compareFit: Computes and compares several point process models fitted to the same dataset,
using a chosen diagnostic.

❼ as.interact: Extracts the interpoint interaction structure (without parameters) from a fitted
point process model or similar object.

❼ is.stationary, is.poisson: New generic functions for testing whether a point process model
is stationary and/or Poisson. Methods for ppm, kppm, slrm etc.

❼ raster.xy: raster coordinates of a pixel mask

❼ zapsmall.im: ’zapsmall’ for pixel images

❼ linearK: Computes the Okabe-Yamada network K-function for a point pattern on a linear
network.

❼ pairdist.lpp: Shortest-path distances between each pair of points on a linear network.

❼ vcov.kppm: Asymptotic variance-covariance matrix for regression parameters in kppm object.
[Contributed by Abdollah Jalilian and Rasmus Waagepetersen]

❼ rLGCP: Simulation of log-Gaussian Cox processes [Contributed by Abdollah Jalilian and Rasmus
Waagepetersen]

❼ predict.rhohat: Method for predict for objects of class rhohat. Computes a pixel image of
the predicted intensity.

❼ Kmodel, pcfmodel: Generic functions that compute the K-function or pair correlation function
of a point process model. There are methods for kppm and ppm.

❼ as.function.fv Converts a function value table (class fv) to a function in R

❼ coef.kppm: Method for coef for objects of class kppm

❼ unitname, unitname<-: These generic functions now have methods for fitted model objects
(classes ppm, slrm, kppm, minconfit) and quadrature schemes (quad).

❼ nobs.ppm: Method for nobs for class ppm. Returns the number of points in the original data.

❼ rgbim, hsvim: Specify three colour channels. These functions convert three pixel images with
numeric values into a single image whose pixel values are strings representing colours.

❼ scaletointerval: Generic utility function to rescale data (including spatial data) to a specified
interval

❼ runiflpp: Uniformly distributed random points on a linear network

❼ rpoislpp: Poisson point process on a linear network

❼ clickjoin: Interactive graphics to create a linear network

❼ superimpose: The function ’superimpose’ is now generic, with methods for ppp, psp and a
default method.

❼ as.ppp.psp: New method for as.ppp extracts the endpoints and marks from a line segment
pattern

14

❼ runiflpp: Uniformly distributed random points on a linear network

❼ rpoislpp: Poisson point process on a linear network

❼ clickjoin: Interactive graphics to create a linear network

❼ superimpose: The function superimpose is now generic, with methods for ppp, psp and a
default method.

❼ nsegments: Number of segments in a line segment pattern

❼ clarkevans.test Classical Clark-Evans test of randomness

❼ msr New class msr of signed measures and vector-valued measures supporting residual analysis.

❼ quadrat.test.quadratcount: Method for quadrat.test for objects of class quadratcount

(allows a χ2 test to be performed on quadrat counts rather than recomputing from the original
data)

❼ tile.areas: Computes areas of tiles in a tessellation (efficiently)

5 Precis of all changes

Here is the text from the ‘overview’ sections of the News and Release Notes for each update.

❼ Likelihood cross-validation for smoothing bandwidth.

❼ Faster computations for pairwise interaction models.

❼ More flexible models of intensity in cluster/Cox processes.

❼ New generic function for smoothing.

❼ Substantial acceleration of many functions

❼ New ’logistic likelihood’ method for fitting Gibbs models.

❼ Nearest neighbours for point patterns in 3D

❼ Nearest-neighbour interpolation in 2D

❼ New ’progress plots’

❼ Hard core thresholds can be estimated automatically.

❼ More support for colour maps

❼ More support for ’fv’ objects

❼ More support for pooling of envelopes.

❼ More functionality for nearest neighbours

❼ More support for ’layered’ objects.

❼ Find clumps in a point pattern.

15

❼ Connected component interaction model.

❼ Improvements to interactive plots.

❼ Visual debugger for Metropolis-Hastings algorithm.

❼ Rounding of spatial coordinates

❼ The spatstat manual now exceeds 1000 pages.

❼ Hybrids of Gibbs point process models.

❼ Second order composite likelihood method for kppm.

❼ Inhomogeneous F, G and J functions.

❼ Delaunay graph distance

❼ Pixel images can now be displayed with a logarithmic colour map.

❼ random sequential packing

❼ Allard-Fraley estimator

❼ method for pooling several quadrat tests

❼ better control over dummy points in ppm

❼ nearest neighbour map

❼ changes to subsetting of images

❼ New code for Partial Residual Plots and Added Variable Plots.

❼ maximum profile pseudolikelihood computations vastly accelerated.

❼ now possible to capture every k-th state of Metropolis-Hastings algorithm.

❼ scope of ’intensity.ppm’ extended.

❼ quadrat.test can now perform Monte Carlo tests and one/two-sided tests

❼ improvements to ’plot.fv’

❼ improvement to ’rescale’

❼ some datasets reorganised/corrected.

❼ New approximation to the intensity of a fitted Gibbs model.

❼ Improvements to 3D summary functions.

❼ A multidimensional point pattern (ppx) can now have ’local’ coordinates as well as spatial and
temporal coordinates and marks.

❼ More support for fitted cluster models (kppm).

❼ split method for multidimensional point patterns (ppx) and point patterns on a linear network
(lpp).

16

❼ Variance estimates are now available for all Gibbs point process models.

❼ Cressie-Loosmore-Ford test implemented

❼ plot.fv now avoids collisions between the legend and the graphics.

❼ Extension to predict.ppm

❼ Improvements to envelopes and multitype summary functions.

❼ Line transects of a pixel image.

❼ Changes to defaults in Metropolis-Hastings simulations.

❼ More geometrical operations

❼ Variance-covariance matrix for Gibbs point process models.

❼ Bootstrap confidence bands for pair correlation function and K function.

❼ Nearest neighbour distance computations accelerated.

❼ Improved support for fitted point process models.

❼ Improved mechanism for handling ’invalid’ point processes

❼ New functions for perfect simulation

❼ Code for ensuring a fitted point process model is a valid point process

❼ Leverage and influence for point process models

❼ New cluster models (support for model-fitting and simulation).

❼ Fit irregular parameters in trend of point process model

❼ Third order summary statistic.

❼ Geyer’s triplet interaction

❼ more functionality for replicated point patterns

❼ changed default for simulation window in point process simulation

❼ changed default for edge correction in Kcom, Gcom

❼ data in spatstat is now lazy-loaded

❼ Spatial Scan Test

❼ Functionality for replicated point patterns

❼ Spatial covariance functions of windows and pixel images.

❼ Area-interaction models can now be fitted in non-rectangular windows

❼ New vignette on ’Getting Started with Spatstat’

❼ Functions to pool data from several objects of the same class.

17

❼ Bandwidth selection for density.ppp and smooth.ppp

❼ Layered plots.

❼ Model-handling facilities.

❼ Inverse-distance weighted smoothing.

❼ Inhomogeneous versions of neighbourhood density functions.

❼ changes to renormalisation of estimates in Kinhom and pcfinhom

❼ new diagnostics based on score residuals

❼ Fitting and simulation of log-Gaussian Cox processes with any covariance function

❼ More support for ’kppm’ and ’rhohat’ objects

❼ Metropolis-Hastings algorithm now saves its transition history

❼ Easier control of dummy points in ppm

❼ Convert an ’fv’ object to an R function

❼ marked line segment patterns can now be plotted

❼ multitype point process models are now ’self-starting’

❼ new functions to manipulate colour images

❼ superimpose is now generic

❼ improved mathematical labels when plotting functions

❼ A line segment pattern can now have a data frame of marks.

❼ Increased numerical stability.

❼ New ’self-starting’ feature of interpoint interactions.

❼ Point process model covariates may now depend on additional parameters.

❼ New class of signed measures, for residual analysis.

❼ Spatstat now has version nicknames.

❼ Improved quadrature schemes in ppm

❼ More methods for intensity

❼ Counterpart of apply for lists of images.

❼ Hexagonal grids and tessellations.

❼ Extensions to scan test and Allard-Fraley cluster set estimator

❼ Extensions and improvements to plotting functions.

❼ Improvements to labelling of fv objects.

18

❼ Geometrical errors in polygons are now repaired automatically.

❼ Switch all plots from colour to greyscale using a single command.

❼ Change parameters of fitted model before simulating it.

❼ Improvements to layout of printed output.

❼ Plots using texture fill.

❼ Changed default behaviour of perfect simulation algorithms.

❼ New syntax for point process models (ppm, kppm, lppm) equivalent to syntax of lm, glm, . . .

❼ Covariates in ppm, kppm can be tessellations.

6 Alphabetical list of changes

Here is a list of all changes made to existing functions, listed alphabetically.

❼ adaptive.density: Now has argument ’verbose’

❼ affine: Argument vec can be in various formats.

❼ as.function.fv: Now allows multiple columns to be interpolated.

❼ alltypes Now works for lpp objects

❼ ants: The function ants.extra$plot() has been renamed plotit() for conformity with other
datasets. The auxiliary data ants.extra now includes a function called side determining
whether a given location is in the scrub or field region. Can be used as a covariate in ppm,
kppm, slrm.

❼ applynbd The arguments N, R and criterion may now be specified together.

❼ areaGain, areaLoss These now handle arbitrary windows W. They are now more accurate when
r is very small.

❼ AreaInter Point process models with the AreaInter interaction can now be fitted to point
pattern data in any window.

❼ as.box3: Now accepts objects of class ppx or boxx.

❼ as.fv: Now handles objects of class kppm or minconfit.

❼ as.mask: Argument eps can now be a 2-vector, specifying x and y resolutions.

❼ as.owin.ppm, as.owin.kppm: New argument from allows the user to extract the spatial window
of the point data (from="points") or the covariate images (from="covariates")

❼ betacells: This dataset has been restructured. The vector of cell profile areas, formerly given
by betacells.extra$area, has now been included as a column of marks in the point pattern
betacells.

❼ bw.relrisk: Computation in large datasets accelerated. New arguments hmin, hmax control the
range of trial values of bandwidth.

19

❼ clusterset: The argument result has been renamed what. It is now possible to give multiple
values to what so that both types of result can be computed together.

❼ colourmap: The argument col can now be any kind of colour data

❼ connected: connected is now generic, with methods for im, owin and ppp.

❼ crossdist.ppp, crossdist.pp3, crossdist.default: New argument squared allows the squared
distances to be computed (saving computation time in some applications)

❼ crossing.psp: New argument fatal allows the user to handle empty intersections

❼ dclf.test, mad.test: The argument X can now be an object produced by a previous call to
dclf.test or mad.test.

❼ default.dummy: Can now generate dummy points as a quasirandom sequence.

❼ default.rmhcontrol, default.expand: These functions now work with models of class rmh-

model as well as ppm.

❼ density.ppp:

– The argument weights can now be a matrix or an expression.

– Numerical underflow no longer occurs when sigma is very small and at="points". A
warning is no longer issued.

– New argument diggle allows choice of edge correction.

– New argument adjust makes it easy to adjust the smoothing bandwidth.

❼ disc: Argument centre can be in various formats.

❼ distcdf: Arguments W and V can now be point patterns.

❼ distfun: The internal format of objects of class distfun has been changed.

❼ duplicated.ppp, unique.ppp New argument rule allows behaviour to be consistent with pack-
age deldir.

❼ effectfun: Now has argument se.fit allowing calculation of standard errors and confidence
intervals.

❼ envelope: All methods for envelope now handle fun=NULL. New argument envir.simul deter-
mines the environment in which to evaluate the expression simulate.

❼ envelope.lpp: Now handles multitype point patterns.

❼ envelope.envelope: New argument transform allows the user to apply a transformation to
previously-computed summary functions.

❼ envelope.envelope: In envelope(E, fun=NULL) if E does not contain simulated summary
functions, but does contain simulated point patterns, then fun now defaults to Kest, instead of
flagging an error.

❼ envelope: Can now calculate an estimate of the true significance level of the ”wrong” test (which
declares the observed summary function to be significant if it lies outside the pointwise critical
boundary anywhere). Controlled by new argument do.pwrong.

20

❼ envelope: Improved plot labels for envelopes that were generated using the transform argu-
ment.

❼ erosion, dilation, opening, closing: If the original set is a polygon, the result is a polygon.

❼ eval.fv, eval.fasp: Improved behaviour when plotted. Evaluation is now applied only to
columns that contain values of the function itself (rather than values of the derivative, hazard
rate, etc). This is controlled by the new argument dotonly.

❼ eval.im: Images with incompatible dimensions are now resampled to make them compatible (if
harmonize=TRUE). When the argument envir is used, eval.im now recognises functions as well
as variables in envir

❼ exactMPLEstrauss: New argument project determines whether the parameter gamma is con-
strained to lie in [0, 1].

❼ expand.owin: Functionality extended to handle all types of expansion rule.

❼ F3est: Calculation of theoretical Poisson curve (theo) has changed, and is now controlled by
the argument sphere.

❼ fitted.ppm, predict.ppm: Argument new.coef specifies a vector of parameter values to replace
the fitted coefficients of the model.

❼ fryplot: Now has arguments to and from, allowing selection of a subset of points.

❼ fryplot, frypoints: These functions now handle marked point patterns properly.

❼ Hardcore, StraussHard: The hard core distance hc can now be omitted; it will be estimated
from data.

❼ identify.ppp: now handles multivariate marks.

❼ im, as.im: The pixel coordinates in an image object are now generated more accurately. This
avoids a numerical error in plot.im.

❼ image.listof: New argument equal.ribbon allows several images to be plotted with the same
colour map. If equal.ribbon=TRUE, the colour ribbon will no longer be displayed repeatedly for
each panel, but will now be plotted only once, at the right hand side of the plot array.

❼ inside.owin: Now accepts the form list(x,y) for the first argument.

❼ intensity.ppp: Now has argument weights.

❼ intensity.ppm: Now works for stationary point process models with the interactions Diggle-
Gratton, DiggleGatesStibbard, Fiksel, PairPiece and Softcore.

❼ intersect.owin, union.owin, setminus.owin: If A and B are polygons, the result is a polygon.

❼ intersect.tess, dirichlet: The tiles of the resulting tessellation are polygons if the input
was polygonal.

❼ iplot: iplot is now generic, with methods for ppp, layered and default. iplot methods now
support zoom and pan navigation.

❼ Kest:

21

– Now includes fast algorithm for correction="none" which will handle patterns containing
millions of points.

– New option: correction = "good" selects the best edge correction that can be computed
in reasonable time.

– Options correction=’border’ and correction=’none’ now run about 4 times faster,
thanks to Julian Gilbey.

– New argument ratio determines whether the numerator and denominator of the estimate
of the K-function will be stored. This enables analysis of replicated point patterns, using
pool.rat to pool the K function estimates.

❼ Kcross, Kdot, Kmulti: New argument ratio determines whether the numerator and denomina-
tor of the estimate of the multitype K-function will be stored. This enables analysis of replicated
point patterns, using pool.rat to pool the K function estimates.

❼ Kinhom

– New argument normpower allows different types of renormalisation.

– Now accepts correction="good".

– New argument update. If lambda is a fitted model (class "ppm" or "kppm") and up-

date=TRUE, the model is re-fitted to the data pattern, before the intensities are computed.

❼ Kmulti, Gmulti, Jmulti: The arguments I, J can now be any kind of subset index or can be
functions that yield a subset index.

❼ Kcom, Gcom: New argument conditional gives more explicit control over choice of edge correction
in compensator. Simplified defaults for edge correction.

❼ Kscaled, Lscaled: Argument lambda can now be a fitted model object (class "ppm").

❼ kppm

– now accepts syntax kppm(X ~ Z) similar to lm and glm, as well as old syntax kppm(X, ~Z)

– Covariates no longer have to be passed in the argument covariates but can be objects in
the R session;

– Now has the option of fitting models using Guan’s (2006) second order composite likelihood.

– More flexible models of the intensity, and greater control over the intensity fitting procedure,
are now possible using the arguments covfunargs, use.gam, nd, eps passed to ppm.

– Also the argument X may now be a quadrature scheme.

– Error messages from the optimising function optim are now trapped and handled.

– Confidence intervals for the fitted trend parameters can now be obtained using confint

– Now accepts clusters="Cauchy" or clusters="VarGamma" for the Neyman-Scott process
with Cauchy or Variance-Gamma cluster kernel.

– Can now fit a log-Gaussian Cox process with any covariance function implemented by the
RandomFields package.

– Covariates can now be tessellations.

❼ latest.news: The text is now displayed one page at a time. Can now be executed by typing
the name of the function without parentheses.

22

❼ layered, layerplotargs, plot.layered: The plotting argument can now be a list of length 1,
which will be replicated to the correct length.

❼ layerplotargs<-: Now handles any spatial object, converting it to a layered object.

❼ Lest: Now handles theoretical variance estimates (using delta method) if var.approx=TRUE

❼ LennardJones Increased numerical stability. New (optional) scaling argument sigma0. Inter-
point distances are automatically rescaled using ’self-starting’ feature.

❼ lgcp.estK, Kmodel: Computation can be greatly accelerated by setting spatstat.options(fastK.lgcp=TRUE).

❼ logLik.ppm: New argument new.coef allows the user to evaluate the likelihood for a different
value of the parameter.

❼ lohboot: When the result is plotted, the confidence limits are now shaded. New argument
global allows global (simultaneous) confidence bands instead of pointwise confidence intervals.

❼ lppm:

– The model-fitting function lppm now accepts a syntax similar to lm or glm, for example
lppm(X ~ Z), but still accepts the older syntax lppm(X, ~Z). To support both kinds of
syntax, the function lppm is now generic, with methods for the classes formula and lppp.
The formula method handles a syntax like lppm(X ~ Z) while the lpp method handles the
old syntax lppm(X, ~Z).

– Covariates no longer have to be passed in the argument covariates: variable names ap-
pearing in the model formula can simply be the names of objects in the R session.

– New arguments eps and nd control the quadrature scheme.

– Stepwise model selection using step now works for lppm objects.

❼ markstat: The arguments N and R may now be specified together.

❼ marks.ppp, marks<-.ppp: New argument drop determines whether a data frame of marks with
only one column will be converted to a vector.

❼ model.depends: Now also recognises ’offset’ terms.

❼ MultiStrauss, MultiHard, MultiStraussHard:

– The argument types can now be omitted or NULL; it will be inferred from the point pattern
data.

– The ordering of the arguments has changed. (The old syntax will still work.)

❼ nbfires: For conformity with other datasets, there is now an object nbfires.extra.

❼ nnclean: Extra arguments are now passed to hist.default. The result now has attributes which
give the fitted parameter values, information about the fitting procedure, and the histogram bar
heights.

❼ nncross: This function is now generic, with methods for ppp and default. nncross.ppp can
now find the k-th nearest neighbours, for any k. New arguments added to control the return
value and the sorting of data.

23

❼ nndist, nnwhich: New argument by makes it possible to find nearest neighbours belonging
to specified subsets in a point pattern, for example, the nearest neighbour of each type in a
multitype point pattern.

❼ nncorr, nnmean, nnvario These functions now handle data frames of marks.

❼ pairwise interaction Gibbs models: Many calculations for these models have been accelerated.

❼ owin: Polygon data are no longer subjected to strict checks on their geometrical validity (self-
intersections, overlaps, etc). Instead, geometrical inconsistencies in polygon data are automati-
cally repaired.

❼ pcf.ppp: New argument domain allows the computation to be restricted to a subset of the
window.

❼ pcf.ppp, pcfinhom: New argument divisor enables better performance of the estimator of pair
correlation function for distances close to zero.

❼ pcfcross, pcfdot: Algorithms have been reimplemented using a single-pass kernel smoother
and now run much faster. Bandwidth selection rule improved.

❼ pcfinhom: Now performs renormalisation of estimate. Default behaviour changed - estimates
are now renormalised by default.

❼ persp.im: The colmap argument can now be a colourmap object

❼ pixel images and grids: The default size of a pixel grid, given by spatstat.options("npixel"),
has been changed from 100 to 128. A power of 2 gives faster and more accurate results in many
cases.

❼ plot.fasp, plot.fv, plot.im, plot.ppp, plot.owin, plot.im: Can be switched from colour
to greyscale by setting spatstat.options(monochrome=TRUE).

❼ plot.colourmap: Now passes arguments to axis to control the plot. Appearance of plot im-
proved.

❼ plot.envelope: If the upper envelope is NA but the lower envelope is finite, the upper limit is
now treated as +Infinity

❼ plot.hyperframe: The argument e now has a different format. Instead of plot(h, plot(XYZ))

one must now type plot(h, quote(plot(XYZ))) This is necessary in order to avoid problems
with ’S4 method dispatch’

❼ plot.fasp: New argument samey controls whether all panels have the same y limits. Changed
default value of samex.

❼ plot.fii: Increased resolution of the plot obtained from plot(fitin(ppm(...)))

❼ plot.fv:

– Improved collision-avoidance algorithm (for avoiding overlaps between curves and legend).

– Labelling of plots has been improved in some cases.

– New argument log allows plotting on logarithmic axes.

24

– The formula can now include the symbols .x and .y as abbreviation for the function
argument and the recommended function value, respectively.

– New argument add

– Argument legendmath now defaults to TRUE.

– New argument legendargs gives more control over appearance of legend.

– Increased default spacing between lines in legend.

– Improved handling of argument shade.

❼ plot.fv, plot.envelope: New argument limitsonly allows calculation of a common x,y scale
for several plots.

❼ plot.im:

– Now handles many arguments recognised by plot.default such as cex.main. Also handles
argument box.

– New argument ribargs contains parameters controlling the ribbon plot only.

– Now returns the colour map used.

– Argument col can now be a function.

– New argument log allows colour map to be equally spaced on a log scale.

– The colour ribbon can now be placed left, right, top or bottom using new argument ribside.

– Can now plot images whose pixel values are strings representing colours. New argument
valuesAreColours

– New arguments add, do.plot, clipwin.

– More arguments recognised by ribargs

❼ plot.kstest: Can now perform P-P and Q-Q plots as well.

❼ plot.layered: New arguments add, main. Better argument handling.

❼ plot.listof, plot.splitppp, contour.listof, image.listof:

– Default behaviour has changed: panels are now plotted on different scales.

– When equal.scales=TRUE the panels are plotted on exactly equal scales and are exactly
aligned (under certain conditions).

– The arguments panel.begin and panel.end can now be objects such as windows.

– New arguments hsep, vsep allow increased spacing between plots without adding white
space around the outer margin.

– Argument mar.panel may have length 1, 2 or 4.

❼ plot.lpp: New arguments. Automatically plots a legend.

❼ plot.owin:

– Polygons with holes can now be plotted with filled colours on any device.

– The window can now be filled with one of 8 different textures.

❼ plot.ppp:

25

– Automatically plots a legend

– Return value is now a graphics map object

– Now behaves differently if there are multiple columns of marks. Each column of marks is
plotted, in a series of separate plots arranged side-by-side.

– An ‘empty’ plot can now be generated by setting type="n".

– New arguments show.window, show.all, do.plot, clipwin

❼ plot.psp: Now handles marked line segment patterns and plots the marks as colours.

❼ plot.scan.test, as.im.scan.test: These functions can now give the optimal value of circle
radius r.

❼ plot.tess: For a tessellation represented by a pixel image, plot.tess no longer treats the pixel
labels as palette colours.

❼ plot.ppp, plot.owin, plot.im, plot.psp, plot.tess, plot.layered: New universal argument
show.all determines what happens when a plot is added to an existing plot. If show.all =

TRUE then everything is plotted, including the main title and colour ribbon.

❼ plot.quadratcount, plot.quadrattest: These functions have now been documented.

❼ print.fv: improved layout.

❼ pool.envelope: New arguments savefuns and savepatterns. Envelopes generated with VARI-

ANCE=TRUE can now be pooled. The plot settings of the input data are now respected.

❼ ppm:

– The model-fitting function ppm now accepts a syntax similar to lm or glm, for example
ppm(X ~ Z), but still accepts the older syntax ppm(X, ~Z). To support both kinds of syntax,
the function ppm is now generic, with methods for the classes formula, ppp and quad. The
formula method handles a syntax like ppm(X ~ Z) while the ppp method handles the old
syntax ppm(X, ~Z).

– Covariates no longer have to be passed in the argument covariates: variable names ap-
pearing in the model formula can simply be the names of objects in the R session.

– Can now fit models with ’hybrid’ interactions.

– New option: method = "logi" for the ’logistic likelihood’ method.

– New argument nd controls the number of dummy points.

– New argument eps determines the spacing between dummy points. (also works for related
functions quadscheme, default.dummy, ...)

– The default quadrature scheme for a point pattern has been improved (in the case of a
non-rectangular window) to remove a possible source of bias.

– Confidence intervals for the fitted trend parameters can now be obtained using confint .

– New argument project determines whether the fitted model is forced to be a valid point
process.

– Interaction objects may now be ’self-starting’ i.e. initial parameter estimates can be com-
puted from the point pattern dataset.

26

– The spatial trend can now depend on additional parameters. This is done by allowing
spatial covariate functions to have additional parameters: function(x, y, ...) where
... is controlled by the new argument covfunargs to ppm.

– The print and summary methods for ppm objects now show standard errors for parameter
estimates if the model is Poisson.

– Covariates can now be tessellations.

❼

❼ ppp: New argument drop determines whether a data frame of marks with only one column will
be converted to a vector.

❼ ppx: Arguments have changed. An object of class ppx may now include ’local’ coordinates as
well as ’spatial’ and ’temporal’ coordinates, and marks.

❼ predict.ppm:

– Can now calculate the conditional intensity of a model relative to any point pattern X (not
just the original data pattern).

– New argument correction allows choice of edge correction when calculating the conditional
intensity.

– New argument interval allows confidence intervals or prediction intervals to be calculated.

– New argument total allows for prediction of the total number of points in a specified
region.

❼ predict.slrm: New argument window

❼ print.ppp, print.summary.ppp, print.owin, print.summary.owin, print.im, print.summary.im,
print.fv, print.msr: These functions now avoid over-running the text margin (i.e. they respect
options(’width’) where possible).

❼ print.ppp, summary.ppp: If the point pattern x was generated by Metropolis-Hastings simula-
tion using rmh, then print(x) and summary(x) show information about the simulation param-
eters.

❼ print.ppm: Standard errors for the parameter estimates, and confidence intervals for the pa-
rameters, can now be printed for all Gibbs models (but are printed only for Poisson models by
default). Now has argument what to allow only selected information to be printed.

❼ print.summary.ppm: Output gives a more precise description of the fitting method.

❼ profilepl: Accelerated (typically by a factor of 5). Does not generate warnings when some of
the candidate models have zero likelihood - for example when fitting model with a hard core.
Can now maximise over trend parameters as well as interaction parameters

❼ progressreport: Improved output (also affects many functions which print progress reports)

❼ project.ppm: Improved algorithm. Now handles terms in the trend formula as well as the inter-
action. The projected point process is now obtained by re-fitting the model, and is guaranteed
to be the maximum pseudolikelihood fit.

❼ psp: A line segment pattern (object of class ’psp’) can now have a data frame of marks.

27

❼ psst: Argument funcorrection changed to funargs allowing greater flexibility.

❼ quad.ppm: Now accepts kppm objects. New argument clip.

❼ quadscheme: Can now generate dummy points from a quasirandom sequence.

❼ quadrat.test.splitppp: The result is now a single object of class quadrattest

❼ quadrat.test: Can now perform Monte Carlo test as well (for use in small samples where the χ2

approximation is inaccurate) New argument alternative allows choice of alternative hypothesis
and returns one-sided or two-sided p-values as appropriate. The print method for quadrattest
objects now displays information about the quadrats.

❼ raster.x, raster.y, raster.xy: These functions have a new argument drop

❼ rDiggleGratton, rDGS, rHardcore, rStrauss, rStraussHard: By default the point pattern
is now generated on a larger window, and trimmed to the original window. New argument
expand=TRUE.

❼ redwoodfull (Full redwood data): The function redwoodfull.extra$plot() has been renamed
plotit for conformity with other datasets, and improved.

❼ relrisk: New argument casecontrol determines whether a bivariate point pattern should be
treated as case-control data. New argument case allows the user to specify which mark value
corresponds to the cases in a case-control dataset.

❼ rescale:

– If scale argument s is missing, then the data are rescaled to native units. For example if
the current unit is 0.1 metres, coordinates will be re-expressed in metres.

– New argument unitname makes it possible to change the name of the unit of length.

❼ residuals.ppm: New arguments new.coef and quad for advanced use (make it possible to
compute residuals from a modified version of the fitted model.) The value returned by residu-

als.ppm is now an object of class msr. It can be plotted directly.

❼ rhohat: Now has arguments eps, dimyx to control pixel resolution. If covariate = "x" or
"y", the resulting object has the same unitname as the original point pattern data. Estimation
can now be performed using local likelihood fitting with the locfit package, or using kernel
smoothing.

❼ rlabel: Now works for lpp, pp3, ppx objects.

❼ rlinegrid, rpoisline: These functions now handle binary mask windows.

❼ rmh: If track=TRUE, the history of transitions of the Metropolis-Hastings algorithm is saved and
returned.

❼ rmh, rmhstart: The initial state (’start’) can now be missing or null.

❼ rmh, rmhcontrol: It is now possible to save every k-th iteration of the Metropolis-Hastings
algorithm. The arguments nsave and nburn may be given to rmh or to rmhcontrol. They
specify that the point pattern will be saved every nsave iterations, after an initial burn-in of
nburn iterations.

28

❼ rmh.default: New argument snoop allows the user to activate a visual debugger for the
Metropolis-Hastings algorithm.

❼ rmh.default: track is no longer a formal argument of rmh.default; it is now a parameter of
rmhcontrol. However there is no change in usage: the argument track can still be given to
rmh.default.

❼ rmh.ppm, simulate.ppm, default.expand: For point process models which have a trend de-
pending only on x and y, the simulation window is now taken to be the same as the original
window containing the data (by default). That is, ‘expansion’ does not take place, by default. (In
previous versions of spatstat the simulation window was larger than the original data window.)

❼ rmh.ppm, simulate.ppm: The argument sequence for these functions has changed. New argu-
ment expand allows more explicit control over simulation domain.

❼ rmh.ppm, simulate.ppm, rmhmodel.ppm: New argument new.coef allows the user to change the
parameters of a fitted model before it is simulated.

❼ rmhcontrol: The default value of the parameters periodic and expand has changed.

❼ rmhcontrol: The parameter expand can now be in any format acceptable to rmhexpand.

❼ rmh.ppm, rmh.default, simulate.ppm: Any rmhcontrol parameter can now be given directly
as an argument to rmh.ppm, rmh.default or simulate.ppm.

❼ rNeymanScott: Argument rcluster may now take a different format.

❼ rotate: The user can specify the centre of rotation.

❼ rotate.owin, affine.owin: These functions now handle binary pixel masks. New argument
rescue determines whether rectangles will be preserved.

❼ rSSI: Performs ’Random Sequential Packing’ if n=Inf.

❼ runifpointOnLines, rpoisppOnLines, runiflpp, rpoislpp: Can now generate multitype point
patterns.

❼ rVarGamma, kppm, vargamma.estK, vargamma.estpcf: New argument nu.pcf provides an alter-
native way to specify the kernel shape in the VarGamma model, instead of the existing argument
nu.ker. Function calls that use the ambiguous argument name nu will no longer be accepted.

❼ second order summary functions (Kest, Lest, Kinhom, pcf.ppp, Kdot, Kcross, Ldot etc etc)
These functions now accept correction="translation" as an alternative to correction =

"translate", for consistency.

❼ scan.test: Now handles multiple values of circle radius ’r’.

❼ setcov: Can now compute the ‘cross-covariance’ between two regions

❼ shift: Argument vec can be in various formats.

❼ simulate.ppm: New argument singlerun determines whether the simulated patterns are gener-
ated using independent runs of the Metropolis-Hastings algorithm or are obtained by performing
one long run of the algorithm and saving every k-th iteration.

❼ simulate.ppm, simulate.kppm: The total computation time is also returned.

29

❼ simulate.kppm: Now catches errors (such as ’insufficient memory’).

❼ slrm: Confidence intervals for the fitted trend parameters can now be obtained using confint

❼ smooth.fv: Further options added.

❼ smooth.ppp: Accelerated, when there are several columns of marks. Bandwidth sigma is now
selected by least-squares cross-validation.

❼ smooth.ppp: Now handles bandwidths equal to zero (by invoking nnmark)

❼ smooth.ppp, smooth.fv, smooth.msr: These functions are now ’Deprecated’ in favour of the
methods Smooth.ppp, Smooth.fv, Smooth.msr respectively.

❼ Smooth.ppp: sigma is now a formal argument of Smooth.ppp

❼ Softcore: Improved numerical stability. New argument sigma0 for manual control over rescal-
ing.

❼ spatstat.options:

– New option nvoxel.

– New option print.ppm.SE controls whether standard errors and confidence intervals are
printed for all Gibbs models, for Poisson models only, or are never printed.

– New option project.fast allows a faster shortcut for project.ppm.

– New options rmh.p, rmh.q, rmh.nrep determine the default values of the parameters p, q
and nrep of the Metropolis-Hastings algorithm. See rmhcontrol.

– New parameter n.bandwidth

– New parameter monochrome switches all plots from colour to greyscale.

❼ square Now accepts vectors of length 2.

❼ str This generic function (for inspecting the internal structure of an object) now produces
sensible output for objects of class hyperframe, ppx, lpp.

❼ stratrand, overlap.owin, update.slrm, edge.Trans, edge.Ripley: These already-existing
functions are now documented.

❼ summary.ppm: Now reports whether the spatial coordinates have been rounded. Improved be-
haviour when the model covariates are a data frame.

❼ superimposePSP: This function is now deprecated in favour of superimpose

❼ superimpose: Now handles data frames of marks.

❼ union.owin: It is now guaranteed that if A is a subset of B, then union.owin(A,B)=B. Now
handles a single argument: union.owin(A) returns A.

❼ varblock: Ugly legends have been repaired.

❼ vcov.ppm: This function now handles all Gibbs point process models. New argument ma-

trix.action controls what happens when the matrix is ill-conditioned.

❼ vcov.slrm: Can now calculate correlation matrix or Fisher information matrix as well as
variance-covariance matrix.

30

❼ with.fv: Argument drop replaced by new argument fun (with different interpretation). New
argument enclos allows evaluation in other environments.

❼ [.fv Now handles the argument ’drop’. Improved behaviour when plotted.

❼ [.im and [<-.im New argument ’j’ allows any type of matrix indexing to be used.

❼ [.im Default behaviour changed in the case of a rectangular subset. New argument ’rescue’ can
be set to TRUE to reinstate previous behaviour.

❼ [.lpp Subset index may now be a window (class ’owin’)

❼ [.msr Now handles character-valued indices.

❼ [.psp Now handles binary mask windows.

7 Serious Bugs Fixed

Hundreds of bugs have been detected and fixed in spatstat since the version covered by the workshop
notes [1]. Bugs that may have affected the user are listed in the package NEWS file. To read all these
bug reports, type

> news(grepl("^BUG", Category), package="spatstat")

which currently produces a list of 304 bugs, of which 245 were detected after publication of the
workshop notes.

Following is a list of the most serious bugs only, in order of potential impact.

❼ nncross.ppp:

Results were completely incorrect if k > 1.
(Bug introduced in spatstat 1.31-2, april 2013; fixed in spatstat 1.35-0, december 2013)

❼ nncross.pp3: Results were completely incorrect in some cases.
(Bug introduced in spatstat 1.32-0, august 2013; fixed in spatstat 1.34-0, october 2013)

❼ rmh:

– Simulation was completely incorrect in the case of a multitype point process with an interac-
tion that does not depend on the marks, such as ppm(betacells, ~marks, Strauss(60))

due to a coding error in the C interface.
(Bug introduced in spatstat 1.22-3, march 2010; fixed in spatstat 1.22-3, june 2011)

– Simulation of the Area-Interaction model was completely incorrect.
(Bug introduced in spatstat 1.23-6, october 2011; fixed in spatstat 1.31-0, january 2013)

– Simulation of the Geyer saturation process was completely incorrect.
(Bug introduced in spatstat 1.31-0, january 2013; fixed in spatstat 1.31-1, march 2013)

– Simulation of the Strauss-Hard Core process was partially incorrect, giving point patterns
with a slightly lower intensity.
(Bug introduced in spatstat 1.31-0, january 2013; fixed in spatstat 1.37-0, may 2014)

– Simulation of the Geyer saturation process was incorrectly initialised, so that the results of
a short run (i.e. small value of nrep) were incorrect, while long runs were correct.
(Bug introduced in spatstat 1.17-0, october 2009; fixed in spatstat 1.31-1, march 2013)

31

❼ nncross, distfun, AreaInter: Results of nncross were possibly incorrect when X and Y did
not have the same window. This bug affected values of distfun and may also have affected ppm
objects with interaction AreaInter.
(Bug introduced in spatstat 1.9-4, june 2006; fixed in spatstat 1.25-2, january 2012)

❼ envelope.ppm: If the model was an inhomogeneous Poisson process, the resulting envelope
object was incorrect (the simulations were correct, but the envelopes were calculated assuming
the model was CSR).
(Bug introduced in spatstat 1.23-5, september 2011; fixed in spatstat 1.23-6, october 2011)

❼ leverage.ppm, influence.ppm, dfbetas.ppm: Results were incorrect for non-Poisson processes.
(Bug introduced in spatstat 1.25-0, december 2011; fixed in spatstat 1.34-0, october 2013)

❼ rVarGamma: Simulations were incorrect; they were generated using the wrong value of the pa-
rameter nu.ker.
(Bug introduced in spatstat 1.25-0, december 2011; fixed in spatstat 1.35-0, december 2013)

❼ rCauchy: Simulations were incorrect; they were generated using the wrong value of the parameter
omega.
(Bug introduced in spatstat 1.25-0, december 2011; fixed in spatstat 1.25-2, january 2012)

❼ kppm, matclust.estpcf, pcfmodel: The pair correlation function of the Mátern Cluster Process
was evaluated incorrectly at distances close to 0. This could have affected the fitted parameters
in matclust.estpcf() or kppm(clusters="MatClust").
(Bug introduced in spatstat 1.20-2, august 2010; fixed in spatstat 1.33-0, september 2013)

❼ ppm: Results were incorrect for the Geyer saturation model with a non-integer value of the
saturation parameter sat.
(Bug introduced in spatstat 1.20-0, july 2010; fixed in spatstat 1.31-2, april 2013)

❼ lppm: For multitype patterns, the fitted model was completely incorrect due to an error in
constructing the quadrature scheme.
(Bug introduced in spatstat 1.23-0, july 2011; fixed in spatstat 1.30-0, december 2012)

❼ Geyer: For point process models with the Geyer interaction, vcov.ppm and suffstat sometimes
gave incorrect answers.
(Bug introduced in spatstat 1.27-0, may 2012; fixed in spatstat 1.30-0, december 2012)

❼ vcov.ppm, suffstat: These functions sometimes gave incorrect values for marked point process
models.
(Bug introduced in spatstat 1.27-0, may 2012; fixed in spatstat 1.29-0, october 2012)

❼ linearK, linearKinhom: If any data points were located exactly at a vertex of the linear network,
the weights for Ang’s correction were incorrect, due to numerical error. This sometimes produced
infinite or NA values of the linear K function.
(Bug introduced in spatstat 1.23-0, july 2011; fixed in spatstat 1.27-0, may 2012)

❼ Kinhom: the results were not renormalised (even if renormalise=TRUE) in some cases.
(Bug introduced in spatstat 1.21-0, december 2010; fixed in spatstat 1.37-0, may 2014)

❼ predict.ppm Calculation of the conditional intensity omitted the edge correction if correc-

tion=’translate’ or correction=’periodic’.
(Bug introduced in spatstat 1.17-0, october 2009; fixed in spatstat 1.31-3, may 2013)

32

❼ scan.test Results were sometimes incorrect due to numerical instability (a ’Gibbs phenomenon’).
(Bug introduced in spatstat 1.24-1, october 2011; fixed in spatstat 1.26-1, april 2012)

❼ selfcrossing.psp: y coordinate values were incorrect.
(Bug introduced in spatstat 1.23-2, august 2011; fixed in spatstat 1.25-3, february 2012)

❼ predict.slrm: Results of predict(object, newdata) were incorrect if the spatial domain of
newdata was larger than the original domain.
(Bug introduced in spatstat 1.21-0, november 2010; fixed in spatstat 1.25-3, february 2012)

❼ Lest: The variance approximations (Lotwick-Silverman and Ripley) obtained with var.approx=TRUE
were incorrect for Lest (although they were correct for Kest) due to a coding error.
(Bug introduced in spatstat 1.24-1, october 2011; fixed in spatstat 1.24-2, november 2011)

❼ bw.diggle: Bandwidth was too large by a factor of 2.
(Bug introduced in spatstat 1.23-4, september 2011; fixed in spatstat 1.23-5, september 2011)

❼ pair correlation functions (pcf.ppp, pcfdot, pcfcross etc:) The result had a negative bias
at the maximum r value, because contributions to the pcf estimate from interpoint distances
greater than max(r) were mistakenly omitted. (Bugs fixed in spatstat 1.35-0, december 2013)

❼ Kest, Lest: Gave incorrect values in very large datasets, due to numerical overflow. ‘Very
large’ typically means about 1 million points in a random pattern, or 100,000 points in a tightly
clustered pattern. [Overflow cannot occur unless there are at least 46,341 points.]

❼ bw.relrisk: Implementation of method="weightedleastsquares" was incorrect and was equiv-
alent to method="leastsquares".
(Bug introduced in spatstat 1.21-0, november 2010; fixed in spatstat 1.23-4, september 2011)

❼ bdist.tiles Values were incorrect in some cases due to numerical error. (Bug fixed in spatstat

1.29-0, october 2012)

❼ polygon geometry The point-in-polygon test gave the wrong answer in some boundary cases.
(Bug fixed in spatstat 1.23-2, august 2011)

References

[1] A.˜Baddeley. Analysing spatial point patterns in R. Technical report, CSIRO, 2010. Version 4.
Available at www.csiro.au/resources/pf16h.html.

33

